Abstract

A simple wide-view circular polarizer comprising of a linear polarizer and two biaxial films is proposed. Over the ±85° viewing cone, the produced polarization is almost circular and the light leakage from the crossed circular polarizers is calculated to be less than 8.23×10-5, provided that the air-interface surface reflections are ignored. The design tolerance within ±5% of the optimal parameters is analyzed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays, (Wiley, New York, 2001).
  2. T. H. Yoon, G. D. Lee, and J. C. Kim, "Nontwist quarter-wave liquid crystal cell for a high-contrast reflective display," Opt. Lett. 25, 1547-1549 (2000).
    [CrossRef]
  3. Y. Iwamoto, Y. Toko, H. Hiramoto, and Y. Iimura, "Improvement of transmitted light efficiency in SH-LCDs using quarter-wave retardation films," Soc. Inf. Display Tech. Digest, 902-905 (2000).
    [CrossRef]
  4. T. Ishinabe, T. Miyashita and T. Uchida, "Design of a quarter wave plate with wide viewing angle and wide wavelength range for high quality reflective LCDs," Soc. Inf. Display Tech. Digest 32, 906-909 (2001).
    [CrossRef]
  5. Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, "Designs of wide-view and broadband circular polarizers," Opt. Express 13, 8318-8331 (2005).
    [CrossRef] [PubMed]
  6. R. Lu, X. Zhu, S. T. Wu, Q. Hong, T. X. Wu, "Ultrawide-view liquid crystal displays," J. Display Technology 1, 3-14 (2005).
    [CrossRef]
  7. S. H. Hong, Y. H. Jeong, H. Y. Kim, H. M. Cho, W. G. Lee, and S. H. Leea, "Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode," J. Appl. Phys. 87, 8259-8263 (2000).
    [CrossRef]
  8. S. Kataoka, A. Takeda, H. Tsuda, Y. Koike, H. Inoue, T. Fujikawa, T. Sasabayashi and K. Okamoto, Soc. Inf. Display Tech. Digest 37, 1066-1069 (2001).
  9. K. Ohmuro, S. Kataoka, T. Sasaki, and Y. Koike, Soc. Inf. Display Tech. Digest 33, 845-848 (1997).
    [CrossRef]
  10. Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal displays," Jpn. J. Appl. Phys. 37, 4822-4828 (1998).
    [CrossRef]
  11. J. Chen, K. H. Kim, J. J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, "Optimum film compensation modes for TN and VA LCDs," Soc. Inf. Display Tech. Digest 29, 315-318 (1998).
  12. S. Huard, Polarization of Light, (Wiley, New York, 1997).
  13. C. Brosseau, Fundamentals of Polarized Light: A statistical Optics Approach, (Wiley, New York, 1998).
    [CrossRef]
  14. Y. Huang, T. X. Wu, and S. T. Wu, "Simulations of liquid-crystal Fabry-Perot etalons by an improved 4×4 matrix method," J. Appl. Phys. 93, 2490-2495 (2003).
  15. Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, "Optical properties of retardation films for STN-LCDs," Soc. Inf. Display Tech. Digest, 22, 739-742 (1991).
  16. R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, (Wiley, Hoboken, 2004).
  17. S. Pancharatnam, "Achromatic combinations of birefringent plates," Proc. Ind. Acad. Sci. A 41, 130-144 (1956).

J. Appl. Phys. (2)

S. H. Hong, Y. H. Jeong, H. Y. Kim, H. M. Cho, W. G. Lee, and S. H. Leea, "Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode," J. Appl. Phys. 87, 8259-8263 (2000).
[CrossRef]

Y. Huang, T. X. Wu, and S. T. Wu, "Simulations of liquid-crystal Fabry-Perot etalons by an improved 4×4 matrix method," J. Appl. Phys. 93, 2490-2495 (2003).

J. Display Technology (1)

R. Lu, X. Zhu, S. T. Wu, Q. Hong, T. X. Wu, "Ultrawide-view liquid crystal displays," J. Display Technology 1, 3-14 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal displays," Jpn. J. Appl. Phys. 37, 4822-4828 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. Ind. Acad. Sci. A (1)

S. Pancharatnam, "Achromatic combinations of birefringent plates," Proc. Ind. Acad. Sci. A 41, 130-144 (1956).

Soc. Inf. Display Tech. Digest (6)

Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, "Optical properties of retardation films for STN-LCDs," Soc. Inf. Display Tech. Digest, 22, 739-742 (1991).

S. Kataoka, A. Takeda, H. Tsuda, Y. Koike, H. Inoue, T. Fujikawa, T. Sasabayashi and K. Okamoto, Soc. Inf. Display Tech. Digest 37, 1066-1069 (2001).

K. Ohmuro, S. Kataoka, T. Sasaki, and Y. Koike, Soc. Inf. Display Tech. Digest 33, 845-848 (1997).
[CrossRef]

Y. Iwamoto, Y. Toko, H. Hiramoto, and Y. Iimura, "Improvement of transmitted light efficiency in SH-LCDs using quarter-wave retardation films," Soc. Inf. Display Tech. Digest, 902-905 (2000).
[CrossRef]

T. Ishinabe, T. Miyashita and T. Uchida, "Design of a quarter wave plate with wide viewing angle and wide wavelength range for high quality reflective LCDs," Soc. Inf. Display Tech. Digest 32, 906-909 (2001).
[CrossRef]

J. Chen, K. H. Kim, J. J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, "Optimum film compensation modes for TN and VA LCDs," Soc. Inf. Display Tech. Digest 29, 315-318 (1998).

Other (4)

S. Huard, Polarization of Light, (Wiley, New York, 1997).

C. Brosseau, Fundamentals of Polarized Light: A statistical Optics Approach, (Wiley, New York, 1998).
[CrossRef]

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays, (Wiley, New York, 2001).

R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, (Wiley, Hoboken, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Configuration of a wide-view circular polarizer with a linear polarizer and two biaxial films.

Fig. 2.
Fig. 2.

States of polarization inside a wide-view circular polarizer at oblique incidence θ in = 85°. Dotted lines and solid line show the polarization states when the azimuths of incident plane ϕ in are at 30° and 60°, respectively. Red and blue lines show the polarizations inside the first and second biaxial films, respectively.

Fig. 3.
Fig. 3.

State of polarization emerging from a wide-view circular polarizer when θ in = 0° ~ 85° at each fixed ϕ in, where ϕ in = 0° ϕ 360° with 10° interval.

Fig. 4.
Fig. 4.

Device configuration of the crossed wide-view circular polarizers.

Fig. 5.
Fig. 5.

Iso-transmittance contour showing: (a) light leakage of the crossed wide-view circular polarizers, and (b) transmittance of two parallel circular polarizers. λ=550 nm.

Fig. 6.
Fig. 6.

Ten-layer ideal anti-reflection film: (a) refractive indices profile, and (b) transmittance.

Fig. 7.
Fig. 7.

The calculated maximum light leakage of the crossed circular polarizers at different viewing angles as a function of wavelength. The configuration of the crossed circular polarizers is in Fig. 1 and the ten-layer anti-reflection film in Fig. 6 is assumed.

Fig. 8.
Fig. 8.

Design tolerance of the proposed wide-view circular polarizer. The viewing cone is ±85° and λ= 550 nm. Ten-layer anti-reflection film is assumed.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ P ( X ) ( RCP ) = P ( X ) P ( RCP )
= ( S 1 _ ( X ) 0 ) 2 + ( S 2 _ ( X ) 0 ) 2 + ( S 3 _ ( X ) ( 1 ) ) 2
= 2 ( S 3 _ ( X ) + 1 ) .
cos t = max { 2 ( S 3 _ ( 2 B ) + 1 ) ( θ in = 0 0 ~ 85 0 , ϕ in = 0 0 ~ 360 0 ) } ,
2 ϕ 1 4 ϕ 2 = 2 × ( 360 + 46.37 ) 4 × ( 180 + 0.68 )
= 90.02 0
90 0

Metrics