Abstract

A simple wide-view circular polarizer comprising of a linear polarizer and two biaxial films is proposed. Over the ±85° viewing cone, the produced polarization is almost circular and the light leakage from the crossed circular polarizers is calculated to be less than 8.23×10-5, provided that the air-interface surface reflections are ignored. The design tolerance within ±5% of the optimal parameters is analyzed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays, (Wiley, New York, 2001).
  2. T. H. Yoon, G. D. Lee, and J. C. Kim, "Nontwist quarter-wave liquid crystal cell for a high-contrast reflective display," Opt. Lett. 25, 1547-1549 (2000).
    [CrossRef]
  3. Y. Iwamoto, Y. Toko, H. Hiramoto, and Y. Iimura, "Improvement of transmitted light efficiency in SH-LCDs using quarter-wave retardation films," Soc. Inf. Display Tech. Digest, 902-905 (2000).
    [CrossRef]
  4. T. Ishinabe, T. Miyashita and T. Uchida, "Design of a quarter wave plate with wide viewing angle and wide wavelength range for high quality reflective LCDs," Soc. Inf. Display Tech. Digest 32, 906-909 (2001).
    [CrossRef]
  5. Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, "Designs of wide-view and broadband circular polarizers," Opt. Express 13, 8318-8331 (2005).
    [CrossRef] [PubMed]
  6. R. Lu, X. Zhu, S. T. Wu, Q. Hong, T. X. Wu, "Ultrawide-view liquid crystal displays," J. Display Technology 1, 3-14 (2005).
    [CrossRef]
  7. S. H. Hong, Y. H. Jeong, H. Y. Kim, H. M. Cho, W. G. Lee, and S. H. Leea, "Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode," J. Appl. Phys. 87, 8259-8263 (2000).
    [CrossRef]
  8. S. Kataoka, A. Takeda, H. Tsuda, Y. Koike, H. Inoue, T. Fujikawa, T. Sasabayashi and K. Okamoto, Soc. Inf. Display Tech. Digest 37, 1066-1069 (2001).
  9. K. Ohmuro, S. Kataoka, T. Sasaki, and Y. Koike, Soc. Inf. Display Tech. Digest 33, 845-848 (1997).
    [CrossRef]
  10. Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal displays," Jpn. J. Appl. Phys. 37, 4822-4828 (1998).
    [CrossRef]
  11. J. Chen, K. H. Kim, J. J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, "Optimum film compensation modes for TN and VA LCDs," Soc. Inf. Display Tech. Digest 29, 315-318 (1998).
  12. S. Huard, Polarization of Light, (Wiley, New York, 1997).
  13. C. Brosseau, Fundamentals of Polarized Light: A statistical Optics Approach, (Wiley, New York, 1998).
    [CrossRef]
  14. Y. Huang, T. X. Wu, and S. T. Wu, "Simulations of liquid-crystal Fabry-Perot etalons by an improved 4×4 matrix method," J. Appl. Phys. 93, 2490-2495 (2003).
  15. Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, "Optical properties of retardation films for STN-LCDs," Soc. Inf. Display Tech. Digest, 22, 739-742 (1991).
  16. R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, (Wiley, Hoboken, 2004).
  17. S. Pancharatnam, "Achromatic combinations of birefringent plates," Proc. Ind. Acad. Sci. A 41, 130-144 (1956).

J. Appl. Phys.

S. H. Hong, Y. H. Jeong, H. Y. Kim, H. M. Cho, W. G. Lee, and S. H. Leea, "Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode," J. Appl. Phys. 87, 8259-8263 (2000).
[CrossRef]

Y. Huang, T. X. Wu, and S. T. Wu, "Simulations of liquid-crystal Fabry-Perot etalons by an improved 4×4 matrix method," J. Appl. Phys. 93, 2490-2495 (2003).

J. Display Technology

R. Lu, X. Zhu, S. T. Wu, Q. Hong, T. X. Wu, "Ultrawide-view liquid crystal displays," J. Display Technology 1, 3-14 (2005).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal displays," Jpn. J. Appl. Phys. 37, 4822-4828 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. Ind. Acad. Sci. A

S. Pancharatnam, "Achromatic combinations of birefringent plates," Proc. Ind. Acad. Sci. A 41, 130-144 (1956).

Soc. Inf. Display Tech. Digest

Y. Iwamoto, Y. Toko, H. Hiramoto, and Y. Iimura, "Improvement of transmitted light efficiency in SH-LCDs using quarter-wave retardation films," Soc. Inf. Display Tech. Digest, 902-905 (2000).
[CrossRef]

T. Ishinabe, T. Miyashita and T. Uchida, "Design of a quarter wave plate with wide viewing angle and wide wavelength range for high quality reflective LCDs," Soc. Inf. Display Tech. Digest 32, 906-909 (2001).
[CrossRef]

J. Chen, K. H. Kim, J. J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, "Optimum film compensation modes for TN and VA LCDs," Soc. Inf. Display Tech. Digest 29, 315-318 (1998).

Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, "Optical properties of retardation films for STN-LCDs," Soc. Inf. Display Tech. Digest, 22, 739-742 (1991).

S. Kataoka, A. Takeda, H. Tsuda, Y. Koike, H. Inoue, T. Fujikawa, T. Sasabayashi and K. Okamoto, Soc. Inf. Display Tech. Digest 37, 1066-1069 (2001).

K. Ohmuro, S. Kataoka, T. Sasaki, and Y. Koike, Soc. Inf. Display Tech. Digest 33, 845-848 (1997).
[CrossRef]

Other

R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, (Wiley, Hoboken, 2004).

S. Huard, Polarization of Light, (Wiley, New York, 1997).

C. Brosseau, Fundamentals of Polarized Light: A statistical Optics Approach, (Wiley, New York, 1998).
[CrossRef]

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays, (Wiley, New York, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Configuration of a wide-view circular polarizer with a linear polarizer and two biaxial films.

Fig. 2.
Fig. 2.

States of polarization inside a wide-view circular polarizer at oblique incidence θ in = 85°. Dotted lines and solid line show the polarization states when the azimuths of incident plane ϕ in are at 30° and 60°, respectively. Red and blue lines show the polarizations inside the first and second biaxial films, respectively.

Fig. 3.
Fig. 3.

State of polarization emerging from a wide-view circular polarizer when θ in = 0° ~ 85° at each fixed ϕ in, where ϕ in = 0° ϕ 360° with 10° interval.

Fig. 4.
Fig. 4.

Device configuration of the crossed wide-view circular polarizers.

Fig. 5.
Fig. 5.

Iso-transmittance contour showing: (a) light leakage of the crossed wide-view circular polarizers, and (b) transmittance of two parallel circular polarizers. λ=550 nm.

Fig. 6.
Fig. 6.

Ten-layer ideal anti-reflection film: (a) refractive indices profile, and (b) transmittance.

Fig. 7.
Fig. 7.

The calculated maximum light leakage of the crossed circular polarizers at different viewing angles as a function of wavelength. The configuration of the crossed circular polarizers is in Fig. 1 and the ten-layer anti-reflection film in Fig. 6 is assumed.

Fig. 8.
Fig. 8.

Design tolerance of the proposed wide-view circular polarizer. The viewing cone is ±85° and λ= 550 nm. Ten-layer anti-reflection film is assumed.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ P ( X ) ( RCP ) = P ( X ) P ( RCP )
= ( S 1 _ ( X ) 0 ) 2 + ( S 2 _ ( X ) 0 ) 2 + ( S 3 _ ( X ) ( 1 ) ) 2
= 2 ( S 3 _ ( X ) + 1 ) .
cos t = max { 2 ( S 3 _ ( 2 B ) + 1 ) ( θ in = 0 0 ~ 85 0 , ϕ in = 0 0 ~ 360 0 ) } ,
2 ϕ 1 4 ϕ 2 = 2 × ( 360 + 46.37 ) 4 × ( 180 + 0.68 )
= 90.02 0
90 0

Metrics