Abstract

We propose a novel compact wavelength demultiplexer, for which two functions arising from the anomalous dispersion characteristics of photonic crystals are combined. One is the superprism that exhibits large angular dispersion and expansion of light beam. The other is the superlens used for the focusing of the expanded light beam. Theoretically, a high resolution of 0.4 nm will be realized in the 1.55 μm wavelength range with device areas of 0.2 and 2.0 mm2, respectively, for available bandwidths of 3 and 35 nm. Also, a low insertion loss of less than 1 dB is expected by the optimization of input and output ends of the photonic crystals. The demultiplexing function is clearly demonstrated in finite-difference time-domain simulation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. P. St. J. Russell and T. B. Birks, "Bloch wave optics in photonic crystals: physics and applications," Photonic band gap materials, C. M. Soukoulis, ed. (Kluwer 1996), pp. 71-91.
  2. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096 (1998).
    [CrossRef]
  3. T. Ochiai and J. Sanchez-Dehesa, "Superprism effect in opal-based photonic crystals," Phys. Rev. B 64, 245113 (2001).
    [CrossRef]
  4. T. Baba and M. Nakamura, "Photonic crystal light deflection devices using the superprism effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
    [CrossRef]
  5. L. Wu, M. Mazilu, T. Karle and T. F. Krauss, "Superprism phenomena in planar photonic crystal," IEEE. J. Quantum. Elecron. 38, 915-918 (2002).
    [CrossRef]
  6. K. B. Chung and S. W. Hong, "Wavelength demultiplexers based on the superprism phenomena in photonic crystals," Appl. Phys. Lett. 81, 1549-1551 (2002).
    [CrossRef]
  7. T. Baba and T. Matsumoto, "Resolution of photonic crystal superprism," Appl. Phys. Lett. 81, 2325-2327 (2002).
    [CrossRef]
  8. T. Prasad, V. Colvin and D. Mittleman, "Superprism phenomenon in three-dimensional macroporous polymer photonic crystals," Phys Rev. B 67, 165103 (2003).
    [CrossRef]
  9. B. Momeni and A. Adibi, "Optimization of photonic crystal demultiplexers based on the superprism effect," Appl. Phys. B 77, 555-560 (2003).
    [CrossRef]
  10. D. Scrymgeour, N. Malkova, S. Kim and V. Gopalan, "Electro-optic control of the superprism effect in photonic crystals," Appl. Phys. Lett. 82, 3176-3178 (2003).
    [CrossRef]
  11. A. V. Zayats and W. Dickson "Polarization superprism effect in surface polaritonic crystals," Appl. Phys. Lett. 82, 4438-4440 (2003).
    [CrossRef]
  12. T. Matsumoto and T. Baba, "Photonic crystal k-vector superprism," J. Lightwave Technol. 22, 917-922 (2004).
    [CrossRef]
  13. T. Baba, T. Matsumoto and M. Echizen, "Finite difference time domain study of high efficiency photonic crystal superprisms," Opt. Express 12, 4608-4613 (2004), <a href="www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4608">www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4608</a>
    [CrossRef] [PubMed]
  14. J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob and G. J. Parker, "Visiblewavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
    [CrossRef]
  15. C. Luo, M. Soljacic and J. D. Joannopoulos, "Superprism effect based on phase velocities," Opt. Lett. 29, 745- 747 (2004).
    [CrossRef] [PubMed]
  16. A. I. Cabuz, E. Centeno and D. Cassagne, "Superprism effect in bidimensional rectangular photonic crystals," Appl. Phys. Lett. 84, 2031-2033 (2004).
    [CrossRef]
  17. J. Witzens, T. Baehr-Jones and A. Scherer, "Hybrid superprism with low insertion losses and suppressed crosstalk,"Phys. Rev. E 71, 026604 (2005).
    [CrossRef]
  18. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, "Self-collimating phenomena in photonic crystal," Appl. Phys. Lett. 74, 1212-1214 (1999).
    [CrossRef]
  19. C. Luo, S. G. Johnson, J. D. Joannopoulos and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
    [CrossRef]
  20. E. Cubukcu, K. Aydin and E. Ozbay, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett 91, 207401 (2004).
    [CrossRef]
  21. A. Husakou and J. Herrmann, "Superfocusing of light below the diffraction limit by photonic crystals with negative refraction," Opt. Express 12, 6491-6497 (2004),<a href="www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6491">www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6491</a>
    [CrossRef] [PubMed]
  22. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
    [CrossRef]
  23. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett. 93, 073920 (2004).
    [CrossRef]
  24. J. Witzens, M. Loncar and A. Scherer, "Self-collimation in planar photonic crystals," IEEE J. Select. Topics Quantum Electon. 8, 1246-1257 (2002).
    [CrossRef]
  25. X. Yu and S. Fan, "Bends and splitters for self-collimated beams in photonic crystals," Appl. Phys. Lett. 83, 3251-3253 (2003).
    [CrossRef]
  26. C. Chen, G. Jin, S. Shi, A. Sharkawy and D. W. Prather, "A unidirectional photonic crystal dispersion-based emitter," Appl. Phys. Lett. 84, 3151-3153 (2004).
    [CrossRef]
  27. T. Baba and D. Ohsaki, "Interfaces of photonic crystals for high efficiency light transmission," Jpn. J. Appl. Phys. 40, 5920-5924 (2001).
    [CrossRef]
  28. T. Fukazawa, F. Ohno and T. Baba, "Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides," Jpn. J. Appl. Phys. 43, L673 - L675 (2004).
    [CrossRef]

Appl. Phys. B

B. Momeni and A. Adibi, "Optimization of photonic crystal demultiplexers based on the superprism effect," Appl. Phys. B 77, 555-560 (2003).
[CrossRef]

Appl. Phys. Lett.

D. Scrymgeour, N. Malkova, S. Kim and V. Gopalan, "Electro-optic control of the superprism effect in photonic crystals," Appl. Phys. Lett. 82, 3176-3178 (2003).
[CrossRef]

A. V. Zayats and W. Dickson "Polarization superprism effect in surface polaritonic crystals," Appl. Phys. Lett. 82, 4438-4440 (2003).
[CrossRef]

K. B. Chung and S. W. Hong, "Wavelength demultiplexers based on the superprism phenomena in photonic crystals," Appl. Phys. Lett. 81, 1549-1551 (2002).
[CrossRef]

T. Baba and T. Matsumoto, "Resolution of photonic crystal superprism," Appl. Phys. Lett. 81, 2325-2327 (2002).
[CrossRef]

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob and G. J. Parker, "Visiblewavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
[CrossRef]

A. I. Cabuz, E. Centeno and D. Cassagne, "Superprism effect in bidimensional rectangular photonic crystals," Appl. Phys. Lett. 84, 2031-2033 (2004).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, "Self-collimating phenomena in photonic crystal," Appl. Phys. Lett. 74, 1212-1214 (1999).
[CrossRef]

X. Yu and S. Fan, "Bends and splitters for self-collimated beams in photonic crystals," Appl. Phys. Lett. 83, 3251-3253 (2003).
[CrossRef]

C. Chen, G. Jin, S. Shi, A. Sharkawy and D. W. Prather, "A unidirectional photonic crystal dispersion-based emitter," Appl. Phys. Lett. 84, 3151-3153 (2004).
[CrossRef]

IEEE J. Quantum Electron.

T. Baba and M. Nakamura, "Photonic crystal light deflection devices using the superprism effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

IEEE J. Select. Topics Quantum Electon.

J. Witzens, M. Loncar and A. Scherer, "Self-collimation in planar photonic crystals," IEEE J. Select. Topics Quantum Electon. 8, 1246-1257 (2002).
[CrossRef]

IEEE. J. Quantum. Elecron.

L. Wu, M. Mazilu, T. Karle and T. F. Krauss, "Superprism phenomena in planar photonic crystal," IEEE. J. Quantum. Elecron. 38, 915-918 (2002).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys.

T. Baba and D. Ohsaki, "Interfaces of photonic crystals for high efficiency light transmission," Jpn. J. Appl. Phys. 40, 5920-5924 (2001).
[CrossRef]

T. Fukazawa, F. Ohno and T. Baba, "Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides," Jpn. J. Appl. Phys. 43, L673 - L675 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys Rev. B

T. Prasad, V. Colvin and D. Mittleman, "Superprism phenomenon in three-dimensional macroporous polymer photonic crystals," Phys Rev. B 67, 165103 (2003).
[CrossRef]

Phys. Rev. B

C. Luo, S. G. Johnson, J. D. Joannopoulos and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096 (1998).
[CrossRef]

T. Ochiai and J. Sanchez-Dehesa, "Superprism effect in opal-based photonic crystals," Phys. Rev. B 64, 245113 (2001).
[CrossRef]

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

Phys. Rev. E

J. Witzens, T. Baehr-Jones and A. Scherer, "Hybrid superprism with low insertion losses and suppressed crosstalk,"Phys. Rev. E 71, 026604 (2005).
[CrossRef]

Phys. Rev. Lett

E. Cubukcu, K. Aydin and E. Ozbay, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett 91, 207401 (2004).
[CrossRef]

Phys. Rev. Lett.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett. 93, 073920 (2004).
[CrossRef]

Other

P. P. St. J. Russell and T. B. Birks, "Bloch wave optics in photonic crystals: physics and applications," Photonic band gap materials, C. M. Soukoulis, ed. (Kluwer 1996), pp. 71-91.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the wavelength demultiplexer consisting of the superprism and focusing lens. (a) Superprism and refractive lens. (b) Superprism and superlens.

Fig. 2.
Fig. 2.

Calculation model (left) and dispersion surface (right) of the superprism. Black region in the dispersion surface shows the air light cone. In the magnified fig., vertical lines are equi-incident-angle curves and gray lines are equi-frequency curves.

Fig. 3.
Fig. 3.

Shaded drawings of two characteristic parameters for the dispersion surface of Fig. 2. (a) Wavelength sensitivity parameter q. (b) Beam collimation parameter 1/p.

Fig. 4.
Fig. 4.

Simulated intensity distribution of light propagation in the superprism with optimized I/O ends.

Fig. 5.
Fig. 5.

Calculation model (left) and dispersion surface (right) of the superlens. Black region shows the air light cone. In the magnified fig., gray lines are equi-frequency curves. The thick one is for a 1/λ = 0.306.

Fig. 6.
Fig. 6.

Light propagation and focused spot profiles simulated in the superlens with optimized input end. Four different 2w 0 are assumed. Disordered pattern between the excitation point and the input end of the superlens is caused by the reflected wave.

Fig. 7.
Fig. 7.

Calculated light intensity distribution in the wavelength demultiplexer. (a) Total view. (b) Magnified view of the square region in (a).

Fig. 8.
Fig. 8.

Performance of the demultiplexer. (a) Normalized wavelength resolution estimated with wavelength sensitivity parameter q. (b) Device area estimated with the normalized frequency.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δλ / λ = ( 2 w / qL ) ( a / λ ) cos 2 θ p
2 w = α [ cos Δ θ k / cos Δ θ in ] 2 w 0 α ( 2 w 0 )
A L 2 tan ( θ p + p Δ θ in ) + { tan ( θ p + p Δ θ in ) tan ( θ p p Δ θ in ) } 2 L 2 Δ θ in / 2
+ { tan ( θ p + p Δ θ in ) tan ( θ p p Δ θ in ) } 2 L 2 / 2 tan Δ θ l

Metrics