Abstract

We examine the transmission characteristics of a NOLM device using a symmetrical coupler, highly twisted fiber, and a quarter-wave (QW) retarder plate introducing a polarization asymmetry in the loop. We demonstrate high dynamic range with controllable transmissivity, and good stability over long times. We experimentally study the transmission behavior for different input polarization states and distinguish between different polarization components of the output beam. Experiments are in good agreement with our theoretical approach previously published. Appropriate choice of the input and output polarizations allows a very high dynamic range. The adjustment of the QW retarder and input polarization enables tuning the critical power over a wide range.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. J. Doran, and D. Wood, "Nonlinear optical loop mirror," Opt. Lett. 13, 56-58 (1988).
  2. J. D. Moores, K. Bergman, H. A. Haus, and E. P. Ippen, "Optical switching using fiber ring reflectors," J. Opt. Soc. Am. B 8, 594-601 (1991).
  3. A. Agarwal, L.Wang, Y. Su, and P. Kumar, "All-optical loadable and erasable storage buffer based on parametric nonlinearity in fiber," J. Lightwave Technol. 23, 2229-2238 (2005).
  4. O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, J. L. Camas-Anzueto, and F. Gutierrez-Zainos, "Experimental demonstration of NOLM switching based on nonlinear polarization rotation," Electron. Lett. 40, 892-894 (2004).
  5. W. Cao and P. K. A.Wai, "Comparison of fiber-based Sagnac interferometers for self-switching of optical pulses," Opt. Commun. 245, 177-186 (2005).
  6. H. C. Lim, F. Futami, and K. Kikuchi, "Polarization independent wavelength-shift-free optical phase conjugator using a nonlinear fiber Sagnac interferometer," IEEE Photonics Technol. Lett. 11, 578-580 (1999).
  7. I. N. Duling III, and M. L. Dennis, Compact sources of ultrashort pulses, Cambridge University Press: Cambridge, 1995.
  8. E. A. Kuzin, B. Ibarra-Escamilla, D. E. Garcia-Gomez, and J.W. Haus, "Fiber laser modelocked by the nonlinear polarization rotation Sagnac interferometer," Opt. Lett. 26, 1559-1561 (2001).
  9. B. Ibarra-Escamilla, E. A. Kuzin, D. E. Gomez-Garcia, F. Gutierrez-Zainos, S. Mendoza-Vazquez, and J. W. Haus, "A modelocked fiber laser using a Sagnac interferometer and nonlinear polarization rotation," J. Opt. A: Pure Appl. Opt. 5, S225-S230 (2003).
  10. I. Golub, and E. Simova, "Ring resonator in a Sagnac interferometer as a birefringence magnifier," Opt. Lett. 30, 87-89 (2005).
  11. E. Simova, I. Golub, and M. J. Picard, "Ring resonator in a Sagnac loop," J. Opt. Soc. Am. B 22, 1723-11730 (2005).
  12. H. Sotobayashi, C. Sawaguchi, Y. Koyamada, and W. Chujo, "Ultrafast walk-off-free nonlinear optical loop mirror by a simplified configuration for 320-Gbit s time-division multiplexing signal demultiplexing," Opt. Lett. 27, 1555-1557 (2002).
  13. M. D. Pelusi, Y. Matsui, and A. Suzuki, "Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror," IEEE J. Quantum Electron. 35, 867-874 (1999).
  14. J. H. Lee, T. Kogure, and D. J. Richardson, "Wavelength tunable 10-GHz 3-ps pulse source using a dispersion decreasing fiber-based nonlinear optical loop mirror," IEEE J. Quantum Electron. 10, 181-185 (2004).
  15. M. Attygalle, A. Nirmalathas, and H. F. Liu, "Novel technique for reduction of amplitude modulation of pulse trains generated by subharmonic synchronous mode-locked laser," IEEE Photonics Technol. Lett. 14, 543-545 (2002).
  16. O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, F. Gutierrez-Zainos, U. Ruiz-Corona, and J. T. Camas-Anzueto, "High-Order amplitude regulation of an optical pulse train using a power-symmetric NOLM with adjustable contrast," IEEE Photonics Technol. Lett. 17, 154-156 (2005).
  17. S. Boscolo, S. K. Turitsyn, and V. K. Mezentsev, "Performance comparison of 2R and 3R optical regeneration schemes at 40 Gb/s for application to all-optical networks," J. Lightwave Technol. 23, 304-309 (2005).
  18. T. Sakamoto, and K. Kikuchi, "160-GHz operation of nonlinear optical loop-mirror with an optical bias controller," IEEE Photonics Technol. Lett. 17, 543-545 (2005).
  19. E. A. Kuzin, N. Korneev, J. W. Haus and B. Ibarra-Escamilla, "Theory of nonliner loop mirrors with twisted low-birefringence fiber," J. Opt. Soc. Am. B 18, 1058-1060 (2001).
  20. O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, J. T. Camas-Anzueto, and F. Gutierrez-Zainos, "Easily tunable nonlinear optical loop mirror based on polarization asymmetry," Opt. Express 12, 3878-3887 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3878">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3878</a>.
  21. O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Mendez-Martinez, "Theoretical investigation of the NOLM with highly twisted fibre and a λ/4 birefringence bias," Opt. Commun. 254, 152-167 (2005).
  22. B. Ibarra-Escamilla, E. A. Kuzin, O. Pottiez, J. W. Haus, F. Gutierrez-Zainos, R. Grajales-Coutiño, and P. Zaca-Moran, "Fiber optical loop mirror with a symmetrical coupler and a quarter-wave retarder plate in the loop," Opt. Commun. 242, 191-197 (2004).

Electron. Lett. (1)

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, J. L. Camas-Anzueto, and F. Gutierrez-Zainos, "Experimental demonstration of NOLM switching based on nonlinear polarization rotation," Electron. Lett. 40, 892-894 (2004).

IEEE J. Quantum Electron. (2)

M. D. Pelusi, Y. Matsui, and A. Suzuki, "Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror," IEEE J. Quantum Electron. 35, 867-874 (1999).

J. H. Lee, T. Kogure, and D. J. Richardson, "Wavelength tunable 10-GHz 3-ps pulse source using a dispersion decreasing fiber-based nonlinear optical loop mirror," IEEE J. Quantum Electron. 10, 181-185 (2004).

IEEE Photonics Technol. Lett. (4)

M. Attygalle, A. Nirmalathas, and H. F. Liu, "Novel technique for reduction of amplitude modulation of pulse trains generated by subharmonic synchronous mode-locked laser," IEEE Photonics Technol. Lett. 14, 543-545 (2002).

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, F. Gutierrez-Zainos, U. Ruiz-Corona, and J. T. Camas-Anzueto, "High-Order amplitude regulation of an optical pulse train using a power-symmetric NOLM with adjustable contrast," IEEE Photonics Technol. Lett. 17, 154-156 (2005).

T. Sakamoto, and K. Kikuchi, "160-GHz operation of nonlinear optical loop-mirror with an optical bias controller," IEEE Photonics Technol. Lett. 17, 543-545 (2005).

H. C. Lim, F. Futami, and K. Kikuchi, "Polarization independent wavelength-shift-free optical phase conjugator using a nonlinear fiber Sagnac interferometer," IEEE Photonics Technol. Lett. 11, 578-580 (1999).

J. Lightwave Technol. (2)

J. Opt. A: Pure Appl. Opt. (1)

B. Ibarra-Escamilla, E. A. Kuzin, D. E. Gomez-Garcia, F. Gutierrez-Zainos, S. Mendoza-Vazquez, and J. W. Haus, "A modelocked fiber laser using a Sagnac interferometer and nonlinear polarization rotation," J. Opt. A: Pure Appl. Opt. 5, S225-S230 (2003).

J. Opt. Soc. Am. B (3)

E. Simova, I. Golub, and M. J. Picard, "Ring resonator in a Sagnac loop," J. Opt. Soc. Am. B 22, 1723-11730 (2005).

J. D. Moores, K. Bergman, H. A. Haus, and E. P. Ippen, "Optical switching using fiber ring reflectors," J. Opt. Soc. Am. B 8, 594-601 (1991).

E. A. Kuzin, N. Korneev, J. W. Haus and B. Ibarra-Escamilla, "Theory of nonliner loop mirrors with twisted low-birefringence fiber," J. Opt. Soc. Am. B 18, 1058-1060 (2001).

Opt. Commun. (3)

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Mendez-Martinez, "Theoretical investigation of the NOLM with highly twisted fibre and a λ/4 birefringence bias," Opt. Commun. 254, 152-167 (2005).

B. Ibarra-Escamilla, E. A. Kuzin, O. Pottiez, J. W. Haus, F. Gutierrez-Zainos, R. Grajales-Coutiño, and P. Zaca-Moran, "Fiber optical loop mirror with a symmetrical coupler and a quarter-wave retarder plate in the loop," Opt. Commun. 242, 191-197 (2004).

W. Cao and P. K. A.Wai, "Comparison of fiber-based Sagnac interferometers for self-switching of optical pulses," Opt. Commun. 245, 177-186 (2005).

Opt. Express (1)

Opt. Lett. (4)

Other (1)

I. N. Duling III, and M. L. Dennis, Compact sources of ultrashort pulses, Cambridge University Press: Cambridge, 1995.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the NOLM including the source and detector systems for the experiment.

Fig. 2.
Fig. 2.

Experimental dependence (circles) and theoretical fits (solid line) of the NOLM transmission on the QW1 angle with low input power.

Fig. 3.
Fig. 3.

Experimental dependence (circles) and theoretical fits (solid lines) of the NOLM transmission on the input peak power for circular input polarization of the pulses and QW1 angle in the point A. The red and blue correspond to the maximum and minimum transmission of the P2-QW3 pair, respectively. The green corresponds to the total transmission.

Fig. 4.
Fig. 4.

Experimental dependence (circles) and theoretical fits (solid lines) of the NOLM transmission on the input peak power for circular input polarization of the pulses and QW1 angle in the point B. The red and blue correspond to the maximum and minimum transmission of the P2-QW3 pair, respectively. The green corresponds to the total transmission.

Fig. 5.
Fig. 5.

Experimental dependence (circles) and theoretical fits (solid line) of the NOLM transmission for linear input polarization of the pulses. The position of P2 is adjusted for minimum transmission.

Fig. 6.
Fig. 6.

Experimental dependence (circles) and theoretical fits (solid line) of the NOLM transmission for linear input polarization of the pulses. The position of P2 is adjusted for maximum transmission.

Metrics