Abstract

A thermo-optically driven adaptive mirror is presented. It is based on the thermal expansion of a thin film heated with a light pattern. We describe a procedure for the preparation of a silicon elastomer with a high-quality optical surface. This material, Sylgard 184, has a high linear thermal expansion coefficient of 3.1∙10-4 K-1. Surface modulations are recorded in an interferometer. Modulations of 350 nm result at an intensity of 370 mW/cm2. The resolution is measured with a line pattern. The contrast drops to 30 % at 1.6 line pairs per millimeter (lp/mm).

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. Vdovin, M. Loktev, "Deformable mirror with thermal actuators," Opt. Lett. 27, 677-679 (2002).
    [CrossRef]
  2. D. Michel, Th. Graf, H. J. Glur, W. Lüthy and H. P. Weber, "Thermo-Optically Driven Adaptive Mirror For Laser Applications," Appl. Phys. B-Lasers Opt. 79, 721-724 (2004).
    [CrossRef]
  3. F. Reinert, Th. Graf, W. Lüthy, and H.P. Weber, "Optically controlled Adaptive Mirror," Laser Phys. Lett. 1, 551-554 (2004).
    [CrossRef]
  4. F. Reinert, M. Gerber, Th. Graf, and W. Lüthy, "Laser Resonator with a thermo-optically driven Adaptive Mirror," in Proceedings of Advanced Solid State Photonics, TOPS 98, (2005).
  5. William D. Callister, Jr., Fundamentals of Materials Science and Engineering: an integrated approach, (Wiley 2nd ed. 2005).
  6. M. Hipp, P. Reiterer, User manual for IDEA 1.7, (Institut für Experimental Physik, Technische Universität Graz 1999).

Appl. Phys. B

D. Michel, Th. Graf, H. J. Glur, W. Lüthy and H. P. Weber, "Thermo-Optically Driven Adaptive Mirror For Laser Applications," Appl. Phys. B-Lasers Opt. 79, 721-724 (2004).
[CrossRef]

Laser Phys. Lett.

F. Reinert, Th. Graf, W. Lüthy, and H.P. Weber, "Optically controlled Adaptive Mirror," Laser Phys. Lett. 1, 551-554 (2004).
[CrossRef]

Opt. Lett.

Other

F. Reinert, M. Gerber, Th. Graf, and W. Lüthy, "Laser Resonator with a thermo-optically driven Adaptive Mirror," in Proceedings of Advanced Solid State Photonics, TOPS 98, (2005).

William D. Callister, Jr., Fundamentals of Materials Science and Engineering: an integrated approach, (Wiley 2nd ed. 2005).

M. Hipp, P. Reiterer, User manual for IDEA 1.7, (Institut für Experimental Physik, Technische Universität Graz 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Preparation procedure for thin Sylgard films

Fig. 2.
Fig. 2.

Experimental arrangement for thin film mirror characterization

Fig. 3.
Fig. 3.

Interferometric image of a 300 μm Sylgard layer on sapphire

Fig. 4.
Fig. 4.

Interference fringes due to disturbance of 1 lp/mm in 300 μm Sylgard layer

Fig. 5.
Fig. 5.

Test pattern left; Response of the adaptive mirror irradiated with the test pattern right

Fig. 6.
Fig. 6.

Contrast B/A = 60 % in a 300 μm Sylgard layer irradiated with 1.12 lp/mm

Fig. 7.
Fig. 7.

Contrast for 300 μm Sylgard layer. The trend line follows a power law

Tables (1)

Tables Icon

Table 1. Selected materials for thin films

Metrics