Abstract

We have fabricated quasi-phase-matched AlGaAs waveguides for continuous-wave second-harmonic generation (SHG) pumped around 1.55 μm. We find that the losses, which limit the conversion efficiency of this type of waveguide, are resulted from two corrugations—the initial template corrugation and the regrowth-induced domain-boundary corrugations. We are able to reduce the waveguide loss by improving the growth conditions. The waveguide loss is 6–7 dB/cm at 1.55 μm, measured using the Fabry-Perot method. A record internal SHG conversion efficiency of 23 %W-1 for AlGaAs waveguides is achieved using a 5-mm-long waveguide with a pump wavelength of 1.568 μm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum. Electron. QE-28, 2631-2654 (1992).
    [CrossRef]
  2. L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, "All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion," Appl. Phys. Lett. 79, 904-906 (2001).
    [CrossRef]
  3. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phasematching using an isotropic nonlinear optical material," Nature 391, 463-466 (1998).
    [CrossRef]
  4. A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, "Second-harmonic generation at λ = 1.6 µm in AlGaAs/Al2O3 waveguides using birefringence phase matching," Appl. Phys. Lett. 72, 2942-2944 (1998).
    [CrossRef]
  5. S. Venugopal Rao, K. Moutzouris and M. Ebrahimzadeh, "Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques," J. Opt. A: Pure Appl. Opt. 6, 569-584 (2004).
    [CrossRef]
  6. K. Moutzouris, S. Venugopal Rao, M. Ebrahimzadeh, A. De Rossi, V. Berger, M. Calligaro, and V. Ortiz, "Efficient second-harmonic generation in birefringently phase-matched GaAs/Al2O3 waveguides," Opt. Lett. 26, 1785-1787 (2001).
    [CrossRef]
  7. S. Venugopal Rao, K. Moutzouris, M. Ebrahimzadeh, A. De Rossi, G. Gintz,M. Calligaro, V. Ortiz, and V. Berger, "Measurements of optical loss in GaAs/Al2O3 nonlinear waveguides in the infrared using femtosecond scattering technique," Opt. Commun. 213, 223-228 (2002).
    [CrossRef]
  8. K. Moutzouris, S. Venugopal Rao, M. Ebrahimzadeh, A. De Rossi, M. Calligaro, V. Ortiz, and V. Berger, "Second-harmonic generation through optimized modal phase matching in semiconductor waveguides," Appl. Phys. Lett. 83, 620-622 (2003).
    [CrossRef]
  9. S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, "Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides," Appl. Phys. Lett. 84, 2974-2976 (2004).
    [CrossRef]
  10. S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, "Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding," Appl. Phys. Lett. 66, 3410-3412 (1995).
    [CrossRef]
  11. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, "Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding," Appl. Phys. Lett. 68, 2609-2611 (1996).
    [CrossRef]
  12. C. Q. Xu, K. Takemasa, K. Nakamura, K. Shinozaki, H. Okayama, and T. Kamijoh, "Device length dependence of optical second-harmonic generation in AlGaAs quasiphase matched waveguides," Appl. Phys. Lett. 70, 1554-1556 (1997).
    [CrossRef]
  13. S. Koh, T. Kondo, Y. Shiraka and R. Ito, "GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices," J. Cryst. Growth. 227/228, 183-192 (2001).
    [CrossRef]
  14. X. Yu, L. Scaccabarozzi, O. Levi, T. J. Pinguet, M. M. Fejer and J. S. Harris, "Template design and fabrication for low loss orientation-patterned nonlinear AlGaAs waveguides pumped at 1.55 µm," J. Cryst. Growth. 251, 794-799 (2003).
    [CrossRef]
  15. A much higher value is reported for pulsed operation but a pulse duty cycle factor has to be multiplied in order to convert a pulsed SHG efficiency to a CW SHG efficiency.
  16. H. Kroemer, "Sublattice allocation and antiphase domain suppression in polar-on-nonpolar nucleation ," J Vac. Sci. Tech. B. 5, 1150-1154 (1987).
    [CrossRef]
  17. R. S. Williams, M. J. Ashwin, T. S. Jonesa and J. H. Neave, "Ridge structure transformation by group-III species modification during the growth of .Al,Ga.As on patterned substrates," J. Appl. Phys. 97, 0449051-0449055 (2005).
    [CrossRef]
  18. E. Gil-Lafon, J. Napierala, D. Castelluci, A. Pimpinelli, R. Cadoret, and B. Gérard, "Selective growth of GaAs by HVPE: keys for accurate control of the growth morphologies," J. Cryst. Growth 222, 482-496 (2001).
    [CrossRef]
  19. R. T. Feuchter and C. Thirstrup, "High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity," IEEE Photon. Technol. Lett. 6, 1244-1247 (1994).
    [CrossRef]

Appl. Phys. Lett. (7)

K. Moutzouris, S. Venugopal Rao, M. Ebrahimzadeh, A. De Rossi, M. Calligaro, V. Ortiz, and V. Berger, "Second-harmonic generation through optimized modal phase matching in semiconductor waveguides," Appl. Phys. Lett. 83, 620-622 (2003).
[CrossRef]

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, "Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides," Appl. Phys. Lett. 84, 2974-2976 (2004).
[CrossRef]

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, "Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding," Appl. Phys. Lett. 66, 3410-3412 (1995).
[CrossRef]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, "Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding," Appl. Phys. Lett. 68, 2609-2611 (1996).
[CrossRef]

C. Q. Xu, K. Takemasa, K. Nakamura, K. Shinozaki, H. Okayama, and T. Kamijoh, "Device length dependence of optical second-harmonic generation in AlGaAs quasiphase matched waveguides," Appl. Phys. Lett. 70, 1554-1556 (1997).
[CrossRef]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, "All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion," Appl. Phys. Lett. 79, 904-906 (2001).
[CrossRef]

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, "Second-harmonic generation at λ = 1.6 µm in AlGaAs/Al2O3 waveguides using birefringence phase matching," Appl. Phys. Lett. 72, 2942-2944 (1998).
[CrossRef]

IEEE J. Quantum. Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum. Electron. QE-28, 2631-2654 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. T. Feuchter and C. Thirstrup, "High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity," IEEE Photon. Technol. Lett. 6, 1244-1247 (1994).
[CrossRef]

J Vac. Sci. Tech. B. (1)

H. Kroemer, "Sublattice allocation and antiphase domain suppression in polar-on-nonpolar nucleation ," J Vac. Sci. Tech. B. 5, 1150-1154 (1987).
[CrossRef]

J. Appl. Phys. (1)

R. S. Williams, M. J. Ashwin, T. S. Jonesa and J. H. Neave, "Ridge structure transformation by group-III species modification during the growth of .Al,Ga.As on patterned substrates," J. Appl. Phys. 97, 0449051-0449055 (2005).
[CrossRef]

J. Cryst. Growth (1)

E. Gil-Lafon, J. Napierala, D. Castelluci, A. Pimpinelli, R. Cadoret, and B. Gérard, "Selective growth of GaAs by HVPE: keys for accurate control of the growth morphologies," J. Cryst. Growth 222, 482-496 (2001).
[CrossRef]

J. Cryst. Growth. (2)

S. Koh, T. Kondo, Y. Shiraka and R. Ito, "GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices," J. Cryst. Growth. 227/228, 183-192 (2001).
[CrossRef]

X. Yu, L. Scaccabarozzi, O. Levi, T. J. Pinguet, M. M. Fejer and J. S. Harris, "Template design and fabrication for low loss orientation-patterned nonlinear AlGaAs waveguides pumped at 1.55 µm," J. Cryst. Growth. 251, 794-799 (2003).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

S. Venugopal Rao, K. Moutzouris and M. Ebrahimzadeh, "Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques," J. Opt. A: Pure Appl. Opt. 6, 569-584 (2004).
[CrossRef]

Nature (1)

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phasematching using an isotropic nonlinear optical material," Nature 391, 463-466 (1998).
[CrossRef]

Opt. Commun. (1)

S. Venugopal Rao, K. Moutzouris, M. Ebrahimzadeh, A. De Rossi, G. Gintz,M. Calligaro, V. Ortiz, and V. Berger, "Measurements of optical loss in GaAs/Al2O3 nonlinear waveguides in the infrared using femtosecond scattering technique," Opt. Commun. 213, 223-228 (2002).
[CrossRef]

Opt. Lett. (1)

Other (1)

A much higher value is reported for pulsed operation but a pulse duty cycle factor has to be multiplied in order to convert a pulsed SHG efficiency to a CW SHG efficiency.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

QPM waveguide structures grown on an-orientation patterned GaAs template. Corrugations are undesired artifacts of the growth process.

Fig. 2.
Fig. 2.

Cross-section SEM of as-cleaved QPM waveguides under two different growth temperatures. Domain boundaries close to the surfaces are highlighted. (a) 725°C; (b) 665°C. Higher growth temperature results in large v-shape grooves at the domain boundaries while the low-temperature growth shows negligible waveguide corrugation.

Fig. 3.
Fig. 3.

(a) Relationship between SHG output power and fundamental input power. (b) SHG output power vs tuning of the fundamental wavelength. The input power is measured at 4.25mW in front of the input facet. Fringes are due to Fabry-Perot resonances at the pump wavelength.

Metrics