Abstract

A triangular nano-aperture in an aluminum film was used as a probe in a scanning near-field optical microscope (SNOM) to image single fluorescent molecules with an optical resolution down to 30 nm. The differently oriented molecules were employed as point detectors to map the vectorial components of the electric field distribution at the illuminated triangular aperture. The good agreement of the experimental results with numerical simulations enabled us to determine both the field map at a triangular aperture and the exact orientations of the probing molecules.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a recent review, see B. Hecht , “ Nano-optics with single quantum systems ,” Phil. Trans. R. Soc. Lond. A   362 , 881 – 899 ( 2004 ).
    [Crossref]
  2. A. Dereux , C. Girard , and J.C. Weeber , “ Theoretical principles of near-field optical microscopies and spectroscopies ,” J. Chem. Phys.   112 , 7775 ( 2000 ).
    [Crossref]
  3. S. Linden , U. Neuberth , N. Rau , A. Naber , M. Wegener , S. Pereira , K. Busch , A. Christ , and J. Kuhl , “ Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs ,” Phys. Rev. B   71 , 245119 ( 2005 ).
    [Crossref]
  4. E. Betzig and R. Chichester , “ Single Molecules Observed by Near-Field Scanning Optical Microscopy ,” Science   262 , 1422 ( 1993 ).
    [Crossref] [PubMed]
  5. Veerman J.A. , M.F. Garcia-Parajo , L. Kuipers , and N.F. van Hulst , “ Single molecule mapping of the optical field distribution of probes for near-field microscopy ,” J. Microsc.   194 , 477 ( 1999 ).
    [Crossref]
  6. H.G. Frey , S. Witt , K. Felderer , and R. Guckenberger , “ High-Resolution Imaging of Single Fluorescent Molecules with the Optical Near-Field of a Metal Tip ,” Phys. Rev. Lett.   93 , 200801 ( 2004 ).
    [Crossref] [PubMed]
  7. J. Koglin , U.C. Fischer , and H. Fuchs , “ Material contrast in scanning near-field optical microscopy at 1–10 nm resolution ,” Phys. Rev. B   55 , 7977 ( 1997 ).
    [Crossref]
  8. A. Naber , D. Molenda , U.C. Fischer , H.J. Maas , C. Höppener , N. Lu , and H. Fuchs , “ Enhanced Light Confinement in a Near-Field Optical Probe with a Triangular Aperture ,” Phys. Rev. Lett.   89 , 210801 ( 2002 ).
    [Crossref] [PubMed]
  9. J.A. Veerman , A.M. Otter , L Kuipers , and N.F. van Hulst , “ High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling ,” Appl. Phys. Lett.   72 , 3115 ( 1998 ).
    [Crossref]
  10. G. Colas des Francs , D. Molenda , U.C. Fischer , and A. Naber , “ Enhanced light confinement in a triangular aperture: Experimental evidence and numerical calculations ,” Phys. Rev. B   72 , 165111 –6 ( 2005 ).
    [Crossref]
  11. E. Bortchagovsky , G. Colas des Francs , D. Molenda , A. Naber , and U.C. Fischer , “ On the confinement of the electric near field at optically excited triangular apertures in a metal film ” (submitted).
  12. K. Tanaka and M. Tanaka , “ Analysis and numerical computation of diffraction of an optical field by a sub-wavelength-size aperture in a thick metallic screen by use of a volume integral equation ,” Appl. Opt.   43 , 1734 ( 2004 ).
    [Crossref] [PubMed]
  13. F. de Lange , A. Cambi , R. Huijbens , B. de Bakker , W. Rensen , M. Garcia-Parajo , N.F. van Hulst , and C.G. Figdor , “ Cell biology beyond the diffraction limit: near-field scanning optical microscopy ,” J. Cell Science   114 , 4153 –60 ( 2001 ).
    [PubMed]
  14. M. Koopman , A. Cambi , B.I. de Bakker , B. Joosten , C.G. Figdor , N.F. van Hulst , and M.F. Garcia-Parajo , “ Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells ,” FEBS Lett.   573 , 6 – 10 ( 2004 ).
    [Crossref] [PubMed]
  15. C. Höppener , J.P. Siebrasse , R. Peters , U. Kubitscheck , and A. Naber , “ High-Resolution Near-Field Optical Imaging of Single Nuclear Pore Complexes under Physiological Conditions ,” Biophys. J.   88 , 3681 – 8 ( 2005 ).
    [Crossref] [PubMed]

2005 (3)

S. Linden , U. Neuberth , N. Rau , A. Naber , M. Wegener , S. Pereira , K. Busch , A. Christ , and J. Kuhl , “ Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs ,” Phys. Rev. B   71 , 245119 ( 2005 ).
[Crossref]

G. Colas des Francs , D. Molenda , U.C. Fischer , and A. Naber , “ Enhanced light confinement in a triangular aperture: Experimental evidence and numerical calculations ,” Phys. Rev. B   72 , 165111 –6 ( 2005 ).
[Crossref]

C. Höppener , J.P. Siebrasse , R. Peters , U. Kubitscheck , and A. Naber , “ High-Resolution Near-Field Optical Imaging of Single Nuclear Pore Complexes under Physiological Conditions ,” Biophys. J.   88 , 3681 – 8 ( 2005 ).
[Crossref] [PubMed]

2004 (4)

K. Tanaka and M. Tanaka , “ Analysis and numerical computation of diffraction of an optical field by a sub-wavelength-size aperture in a thick metallic screen by use of a volume integral equation ,” Appl. Opt.   43 , 1734 ( 2004 ).
[Crossref] [PubMed]

M. Koopman , A. Cambi , B.I. de Bakker , B. Joosten , C.G. Figdor , N.F. van Hulst , and M.F. Garcia-Parajo , “ Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells ,” FEBS Lett.   573 , 6 – 10 ( 2004 ).
[Crossref] [PubMed]

For a recent review, see B. Hecht , “ Nano-optics with single quantum systems ,” Phil. Trans. R. Soc. Lond. A   362 , 881 – 899 ( 2004 ).
[Crossref]

H.G. Frey , S. Witt , K. Felderer , and R. Guckenberger , “ High-Resolution Imaging of Single Fluorescent Molecules with the Optical Near-Field of a Metal Tip ,” Phys. Rev. Lett.   93 , 200801 ( 2004 ).
[Crossref] [PubMed]

2002 (1)

A. Naber , D. Molenda , U.C. Fischer , H.J. Maas , C. Höppener , N. Lu , and H. Fuchs , “ Enhanced Light Confinement in a Near-Field Optical Probe with a Triangular Aperture ,” Phys. Rev. Lett.   89 , 210801 ( 2002 ).
[Crossref] [PubMed]

2001 (1)

F. de Lange , A. Cambi , R. Huijbens , B. de Bakker , W. Rensen , M. Garcia-Parajo , N.F. van Hulst , and C.G. Figdor , “ Cell biology beyond the diffraction limit: near-field scanning optical microscopy ,” J. Cell Science   114 , 4153 –60 ( 2001 ).
[PubMed]

2000 (1)

A. Dereux , C. Girard , and J.C. Weeber , “ Theoretical principles of near-field optical microscopies and spectroscopies ,” J. Chem. Phys.   112 , 7775 ( 2000 ).
[Crossref]

1999 (1)

Veerman J.A. , M.F. Garcia-Parajo , L. Kuipers , and N.F. van Hulst , “ Single molecule mapping of the optical field distribution of probes for near-field microscopy ,” J. Microsc.   194 , 477 ( 1999 ).
[Crossref]

1998 (1)

J.A. Veerman , A.M. Otter , L Kuipers , and N.F. van Hulst , “ High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling ,” Appl. Phys. Lett.   72 , 3115 ( 1998 ).
[Crossref]

1997 (1)

J. Koglin , U.C. Fischer , and H. Fuchs , “ Material contrast in scanning near-field optical microscopy at 1–10 nm resolution ,” Phys. Rev. B   55 , 7977 ( 1997 ).
[Crossref]

1993 (1)

E. Betzig and R. Chichester , “ Single Molecules Observed by Near-Field Scanning Optical Microscopy ,” Science   262 , 1422 ( 1993 ).
[Crossref] [PubMed]

Betzig, E.

E. Betzig and R. Chichester , “ Single Molecules Observed by Near-Field Scanning Optical Microscopy ,” Science   262 , 1422 ( 1993 ).
[Crossref] [PubMed]

Bortchagovsky, E.

E. Bortchagovsky , G. Colas des Francs , D. Molenda , A. Naber , and U.C. Fischer , “ On the confinement of the electric near field at optically excited triangular apertures in a metal film ” (submitted).

Busch, K.

S. Linden , U. Neuberth , N. Rau , A. Naber , M. Wegener , S. Pereira , K. Busch , A. Christ , and J. Kuhl , “ Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs ,” Phys. Rev. B   71 , 245119 ( 2005 ).
[Crossref]

Cambi, A.

M. Koopman , A. Cambi , B.I. de Bakker , B. Joosten , C.G. Figdor , N.F. van Hulst , and M.F. Garcia-Parajo , “ Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells ,” FEBS Lett.   573 , 6 – 10 ( 2004 ).
[Crossref] [PubMed]

F. de Lange , A. Cambi , R. Huijbens , B. de Bakker , W. Rensen , M. Garcia-Parajo , N.F. van Hulst , and C.G. Figdor , “ Cell biology beyond the diffraction limit: near-field scanning optical microscopy ,” J. Cell Science   114 , 4153 –60 ( 2001 ).
[PubMed]

Chichester, R.

E. Betzig and R. Chichester , “ Single Molecules Observed by Near-Field Scanning Optical Microscopy ,” Science   262 , 1422 ( 1993 ).
[Crossref] [PubMed]

Christ, A.

S. Linden , U. Neuberth , N. Rau , A. Naber , M. Wegener , S. Pereira , K. Busch , A. Christ , and J. Kuhl , “ Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs ,” Phys. Rev. B   71 , 245119 ( 2005 ).
[Crossref]

Colas des Francs, G.

G. Colas des Francs , D. Molenda , U.C. Fischer , and A. Naber , “ Enhanced light confinement in a triangular aperture: Experimental evidence and numerical calculations ,” Phys. Rev. B   72 , 165111 –6 ( 2005 ).
[Crossref]

E. Bortchagovsky , G. Colas des Francs , D. Molenda , A. Naber , and U.C. Fischer , “ On the confinement of the electric near field at optically excited triangular apertures in a metal film ” (submitted).

de Bakker, B.

F. de Lange , A. Cambi , R. Huijbens , B. de Bakker , W. Rensen , M. Garcia-Parajo , N.F. van Hulst , and C.G. Figdor , “ Cell biology beyond the diffraction limit: near-field scanning optical microscopy ,” J. Cell Science   114 , 4153 –60 ( 2001 ).
[PubMed]

de Bakker, B.I.

M. Koopman , A. Cambi , B.I. de Bakker , B. Joosten , C.G. Figdor , N.F. van Hulst , and M.F. Garcia-Parajo , “ Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells ,” FEBS Lett.   573 , 6 – 10 ( 2004 ).
[Crossref] [PubMed]

de Lange, F.

F. de Lange , A. Cambi , R. Huijbens , B. de Bakker , W. Rensen , M. Garcia-Parajo , N.F. van Hulst , and C.G. Figdor , “ Cell biology beyond the diffraction limit: near-field scanning optical microscopy ,” J. Cell Science   114 , 4153 –60 ( 2001 ).
[PubMed]

Dereux, A.

A. Dereux , C. Girard , and J.C. Weeber , “ Theoretical principles of near-field optical microscopies and spectroscopies ,” J. Chem. Phys.   112 , 7775 ( 2000 ).
[Crossref]

Felderer, K.

H.G. Frey , S. Witt , K. Felderer , and R. Guckenberger , “ High-Resolution Imaging of Single Fluorescent Molecules with the Optical Near-Field of a Metal Tip ,” Phys. Rev. Lett.   93 , 200801 ( 2004 ).
[Crossref] [PubMed]

Figdor, C.G.

M. Koopman , A. Cambi , B.I. de Bakker , B. Joosten , C.G. Figdor , N.F. van Hulst , and M.F. Garcia-Parajo , “ Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells ,” FEBS Lett.   573 , 6 – 10 ( 2004 ).
[Crossref] [PubMed]

F. de Lange , A. Cambi , R. Huijbens , B. de Bakker , W. Rensen , M. Garcia-Parajo , N.F. van Hulst , and C.G. Figdor , “ Cell biology beyond the diffraction limit: near-field scanning optical microscopy ,” J. Cell Science   114 , 4153 –60 ( 2001 ).
[PubMed]

Fischer, U.C.

G. Colas des Francs , D. Molenda , U.C. Fischer , and A. Naber , “ Enhanced light confinement in a triangular aperture: Experimental evidence and numerical calculations ,” Phys. Rev. B   72 , 165111 –6 ( 2005 ).
[Crossref]

A. Naber , D. Molenda , U.C. Fischer , H.J. Maas , C. Höppener , N. Lu , and H. Fuchs , “ Enhanced Light Confinement in a Near-Field Optical Probe with a Triangular Aperture ,” Phys. Rev. Lett.   89 , 210801 ( 2002 ).
[Crossref] [PubMed]

J. Koglin , U.C. Fischer , and H. Fuchs , “ Material contrast in scanning near-field optical microscopy at 1–10 nm resolution ,” Phys. Rev. B   55 , 7977 ( 1997 ).
[Crossref]

E. Bortchagovsky , G. Colas des Francs , D. Molenda , A. Naber , and U.C. Fischer , “ On the confinement of the electric near field at optically excited triangular apertures in a metal film ” (submitted).

Frey, H.G.

H.G. Frey , S. Witt , K. Felderer , and R. Guckenberger , “ High-Resolution Imaging of Single Fluorescent Molecules with the Optical Near-Field of a Metal Tip ,” Phys. Rev. Lett.   93 , 200801 ( 2004 ).
[Crossref] [PubMed]

Fuchs, H.

A. Naber , D. Molenda , U.C. Fischer , H.J. Maas , C. Höppener , N. Lu , and H. Fuchs , “ Enhanced Light Confinement in a Near-Field Optical Probe with a Triangular Aperture ,” Phys. Rev. Lett.   89 , 210801 ( 2002 ).
[Crossref] [PubMed]

J. Koglin , U.C. Fischer , and H. Fuchs , “ Material contrast in scanning near-field optical microscopy at 1–10 nm resolution ,” Phys. Rev. B   55 , 7977 ( 1997 ).
[Crossref]

Garcia-Parajo, M.

F. de Lange , A. Cambi , R. Huijbens , B. de Bakker , W. Rensen , M. Garcia-Parajo , N.F. van Hulst , and C.G. Figdor , “ Cell biology beyond the diffraction limit: near-field scanning optical microscopy ,” J. Cell Science   114 , 4153 –60 ( 2001 ).
[PubMed]

Garcia-Parajo, M.F.

M. Koopman , A. Cambi , B.I. de Bakker , B. Joosten , C.G. Figdor , N.F. van Hulst , and M.F. Garcia-Parajo , “ Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells ,” FEBS Lett.   573 , 6 – 10 ( 2004 ).
[Crossref] [PubMed]

Veerman J.A. , M.F. Garcia-Parajo , L. Kuipers , and N.F. van Hulst , “ Single molecule mapping of the optical field distribution of probes for near-field microscopy ,” J. Microsc.   194 , 477 ( 1999 ).
[Crossref]

Girard, C.

A. Dereux , C. Girard , and J.C. Weeber , “ Theoretical principles of near-field optical microscopies and spectroscopies ,” J. Chem. Phys.   112 , 7775 ( 2000 ).
[Crossref]

Guckenberger, R.

H.G. Frey , S. Witt , K. Felderer , and R. Guckenberger , “ High-Resolution Imaging of Single Fluorescent Molecules with the Optical Near-Field of a Metal Tip ,” Phys. Rev. Lett.   93 , 200801 ( 2004 ).
[Crossref] [PubMed]

Hecht, B.

For a recent review, see B. Hecht , “ Nano-optics with single quantum systems ,” Phil. Trans. R. Soc. Lond. A   362 , 881 – 899 ( 2004 ).
[Crossref]

Höppener, C.

C. Höppener , J.P. Siebrasse , R. Peters , U. Kubitscheck , and A. Naber , “ High-Resolution Near-Field Optical Imaging of Single Nuclear Pore Complexes under Physiological Conditions ,” Biophys. J.   88 , 3681 – 8 ( 2005 ).
[Crossref] [PubMed]

A. Naber , D. Molenda , U.C. Fischer , H.J. Maas , C. Höppener , N. Lu , and H. Fuchs , “ Enhanced Light Confinement in a Near-Field Optical Probe with a Triangular Aperture ,” Phys. Rev. Lett.   89 , 210801 ( 2002 ).
[Crossref] [PubMed]

Huijbens, R.

F. de Lange , A. Cambi , R. Huijbens , B. de Bakker , W. Rensen , M. Garcia-Parajo , N.F. van Hulst , and C.G. Figdor , “ Cell biology beyond the diffraction limit: near-field scanning optical microscopy ,” J. Cell Science   114 , 4153 –60 ( 2001 ).
[PubMed]

J.A., Veerman

Veerman J.A. , M.F. Garcia-Parajo , L. Kuipers , and N.F. van Hulst , “ Single molecule mapping of the optical field distribution of probes for near-field microscopy ,” J. Microsc.   194 , 477 ( 1999 ).
[Crossref]

Joosten, B.

M. Koopman , A. Cambi , B.I. de Bakker , B. Joosten , C.G. Figdor , N.F. van Hulst , and M.F. Garcia-Parajo , “ Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells ,” FEBS Lett.   573 , 6 – 10 ( 2004 ).
[Crossref] [PubMed]

Koglin, J.

J. Koglin , U.C. Fischer , and H. Fuchs , “ Material contrast in scanning near-field optical microscopy at 1–10 nm resolution ,” Phys. Rev. B   55 , 7977 ( 1997 ).
[Crossref]

Koopman, M.

M. Koopman , A. Cambi , B.I. de Bakker , B. Joosten , C.G. Figdor , N.F. van Hulst , and M.F. Garcia-Parajo , “ Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells ,” FEBS Lett.   573 , 6 – 10 ( 2004 ).
[Crossref] [PubMed]

Kubitscheck, U.

C. Höppener , J.P. Siebrasse , R. Peters , U. Kubitscheck , and A. Naber , “ High-Resolution Near-Field Optical Imaging of Single Nuclear Pore Complexes under Physiological Conditions ,” Biophys. J.   88 , 3681 – 8 ( 2005 ).
[Crossref] [PubMed]

Kuhl, J.

S. Linden , U. Neuberth , N. Rau , A. Naber , M. Wegener , S. Pereira , K. Busch , A. Christ , and J. Kuhl , “ Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs ,” Phys. Rev. B   71 , 245119 ( 2005 ).
[Crossref]

Kuipers, L

J.A. Veerman , A.M. Otter , L Kuipers , and N.F. van Hulst , “ High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling ,” Appl. Phys. Lett.   72 , 3115 ( 1998 ).
[Crossref]

Kuipers, L.

Veerman J.A. , M.F. Garcia-Parajo , L. Kuipers , and N.F. van Hulst , “ Single molecule mapping of the optical field distribution of probes for near-field microscopy ,” J. Microsc.   194 , 477 ( 1999 ).
[Crossref]

Linden, S.

S. Linden , U. Neuberth , N. Rau , A. Naber , M. Wegener , S. Pereira , K. Busch , A. Christ , and J. Kuhl , “ Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs ,” Phys. Rev. B   71 , 245119 ( 2005 ).
[Crossref]

Lu, N.

A. Naber , D. Molenda , U.C. Fischer , H.J. Maas , C. Höppener , N. Lu , and H. Fuchs , “ Enhanced Light Confinement in a Near-Field Optical Probe with a Triangular Aperture ,” Phys. Rev. Lett.   89 , 210801 ( 2002 ).
[Crossref] [PubMed]

Maas, H.J.

A. Naber , D. Molenda , U.C. Fischer , H.J. Maas , C. Höppener , N. Lu , and H. Fuchs , “ Enhanced Light Confinement in a Near-Field Optical Probe with a Triangular Aperture ,” Phys. Rev. Lett.   89 , 210801 ( 2002 ).
[Crossref] [PubMed]

Molenda, D.

G. Colas des Francs , D. Molenda , U.C. Fischer , and A. Naber , “ Enhanced light confinement in a triangular aperture: Experimental evidence and numerical calculations ,” Phys. Rev. B   72 , 165111 –6 ( 2005 ).
[Crossref]

A. Naber , D. Molenda , U.C. Fischer , H.J. Maas , C. Höppener , N. Lu , and H. Fuchs , “ Enhanced Light Confinement in a Near-Field Optical Probe with a Triangular Aperture ,” Phys. Rev. Lett.   89 , 210801 ( 2002 ).
[Crossref] [PubMed]

E. Bortchagovsky , G. Colas des Francs , D. Molenda , A. Naber , and U.C. Fischer , “ On the confinement of the electric near field at optically excited triangular apertures in a metal film ” (submitted).

Naber, A.

G. Colas des Francs , D. Molenda , U.C. Fischer , and A. Naber , “ Enhanced light confinement in a triangular aperture: Experimental evidence and numerical calculations ,” Phys. Rev. B   72 , 165111 –6 ( 2005 ).
[Crossref]

C. Höppener , J.P. Siebrasse , R. Peters , U. Kubitscheck , and A. Naber , “ High-Resolution Near-Field Optical Imaging of Single Nuclear Pore Complexes under Physiological Conditions ,” Biophys. J.   88 , 3681 – 8 ( 2005 ).
[Crossref] [PubMed]

S. Linden , U. Neuberth , N. Rau , A. Naber , M. Wegener , S. Pereira , K. Busch , A. Christ , and J. Kuhl , “ Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs ,” Phys. Rev. B   71 , 245119 ( 2005 ).
[Crossref]

A. Naber , D. Molenda , U.C. Fischer , H.J. Maas , C. Höppener , N. Lu , and H. Fuchs , “ Enhanced Light Confinement in a Near-Field Optical Probe with a Triangular Aperture ,” Phys. Rev. Lett.   89 , 210801 ( 2002 ).
[Crossref] [PubMed]

E. Bortchagovsky , G. Colas des Francs , D. Molenda , A. Naber , and U.C. Fischer , “ On the confinement of the electric near field at optically excited triangular apertures in a metal film ” (submitted).

Neuberth, U.

S. Linden , U. Neuberth , N. Rau , A. Naber , M. Wegener , S. Pereira , K. Busch , A. Christ , and J. Kuhl , “ Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs ,” Phys. Rev. B   71 , 245119 ( 2005 ).
[Crossref]

Otter, A.M.

J.A. Veerman , A.M. Otter , L Kuipers , and N.F. van Hulst , “ High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling ,” Appl. Phys. Lett.   72 , 3115 ( 1998 ).
[Crossref]

Pereira, S.

S. Linden , U. Neuberth , N. Rau , A. Naber , M. Wegener , S. Pereira , K. Busch , A. Christ , and J. Kuhl , “ Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs ,” Phys. Rev. B   71 , 245119 ( 2005 ).
[Crossref]

Peters, R.

C. Höppener , J.P. Siebrasse , R. Peters , U. Kubitscheck , and A. Naber , “ High-Resolution Near-Field Optical Imaging of Single Nuclear Pore Complexes under Physiological Conditions ,” Biophys. J.   88 , 3681 – 8 ( 2005 ).
[Crossref] [PubMed]

Rau, N.

S. Linden , U. Neuberth , N. Rau , A. Naber , M. Wegener , S. Pereira , K. Busch , A. Christ , and J. Kuhl , “ Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs ,” Phys. Rev. B   71 , 245119 ( 2005 ).
[Crossref]

Rensen, W.

F. de Lange , A. Cambi , R. Huijbens , B. de Bakker , W. Rensen , M. Garcia-Parajo , N.F. van Hulst , and C.G. Figdor , “ Cell biology beyond the diffraction limit: near-field scanning optical microscopy ,” J. Cell Science   114 , 4153 –60 ( 2001 ).
[PubMed]

Siebrasse, J.P.

C. Höppener , J.P. Siebrasse , R. Peters , U. Kubitscheck , and A. Naber , “ High-Resolution Near-Field Optical Imaging of Single Nuclear Pore Complexes under Physiological Conditions ,” Biophys. J.   88 , 3681 – 8 ( 2005 ).
[Crossref] [PubMed]

Tanaka, K.

Tanaka, M.

van Hulst, N.F.

M. Koopman , A. Cambi , B.I. de Bakker , B. Joosten , C.G. Figdor , N.F. van Hulst , and M.F. Garcia-Parajo , “ Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells ,” FEBS Lett.   573 , 6 – 10 ( 2004 ).
[Crossref] [PubMed]

F. de Lange , A. Cambi , R. Huijbens , B. de Bakker , W. Rensen , M. Garcia-Parajo , N.F. van Hulst , and C.G. Figdor , “ Cell biology beyond the diffraction limit: near-field scanning optical microscopy ,” J. Cell Science   114 , 4153 –60 ( 2001 ).
[PubMed]

Veerman J.A. , M.F. Garcia-Parajo , L. Kuipers , and N.F. van Hulst , “ Single molecule mapping of the optical field distribution of probes for near-field microscopy ,” J. Microsc.   194 , 477 ( 1999 ).
[Crossref]

J.A. Veerman , A.M. Otter , L Kuipers , and N.F. van Hulst , “ High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling ,” Appl. Phys. Lett.   72 , 3115 ( 1998 ).
[Crossref]

Veerman, J.A.

J.A. Veerman , A.M. Otter , L Kuipers , and N.F. van Hulst , “ High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling ,” Appl. Phys. Lett.   72 , 3115 ( 1998 ).
[Crossref]

Weeber, J.C.

A. Dereux , C. Girard , and J.C. Weeber , “ Theoretical principles of near-field optical microscopies and spectroscopies ,” J. Chem. Phys.   112 , 7775 ( 2000 ).
[Crossref]

Wegener, M.

S. Linden , U. Neuberth , N. Rau , A. Naber , M. Wegener , S. Pereira , K. Busch , A. Christ , and J. Kuhl , “ Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs ,” Phys. Rev. B   71 , 245119 ( 2005 ).
[Crossref]

Witt, S.

H.G. Frey , S. Witt , K. Felderer , and R. Guckenberger , “ High-Resolution Imaging of Single Fluorescent Molecules with the Optical Near-Field of a Metal Tip ,” Phys. Rev. Lett.   93 , 200801 ( 2004 ).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J.A. Veerman , A.M. Otter , L Kuipers , and N.F. van Hulst , “ High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling ,” Appl. Phys. Lett.   72 , 3115 ( 1998 ).
[Crossref]

Biophys. J. (1)

C. Höppener , J.P. Siebrasse , R. Peters , U. Kubitscheck , and A. Naber , “ High-Resolution Near-Field Optical Imaging of Single Nuclear Pore Complexes under Physiological Conditions ,” Biophys. J.   88 , 3681 – 8 ( 2005 ).
[Crossref] [PubMed]

FEBS Lett. (1)

M. Koopman , A. Cambi , B.I. de Bakker , B. Joosten , C.G. Figdor , N.F. van Hulst , and M.F. Garcia-Parajo , “ Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells ,” FEBS Lett.   573 , 6 – 10 ( 2004 ).
[Crossref] [PubMed]

J. Cell Science (1)

F. de Lange , A. Cambi , R. Huijbens , B. de Bakker , W. Rensen , M. Garcia-Parajo , N.F. van Hulst , and C.G. Figdor , “ Cell biology beyond the diffraction limit: near-field scanning optical microscopy ,” J. Cell Science   114 , 4153 –60 ( 2001 ).
[PubMed]

J. Chem. Phys. (1)

A. Dereux , C. Girard , and J.C. Weeber , “ Theoretical principles of near-field optical microscopies and spectroscopies ,” J. Chem. Phys.   112 , 7775 ( 2000 ).
[Crossref]

J. Microsc. (1)

Veerman J.A. , M.F. Garcia-Parajo , L. Kuipers , and N.F. van Hulst , “ Single molecule mapping of the optical field distribution of probes for near-field microscopy ,” J. Microsc.   194 , 477 ( 1999 ).
[Crossref]

Phil. Trans. R. Soc. Lond. A (1)

For a recent review, see B. Hecht , “ Nano-optics with single quantum systems ,” Phil. Trans. R. Soc. Lond. A   362 , 881 – 899 ( 2004 ).
[Crossref]

Phys. Rev. B (3)

S. Linden , U. Neuberth , N. Rau , A. Naber , M. Wegener , S. Pereira , K. Busch , A. Christ , and J. Kuhl , “ Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs ,” Phys. Rev. B   71 , 245119 ( 2005 ).
[Crossref]

G. Colas des Francs , D. Molenda , U.C. Fischer , and A. Naber , “ Enhanced light confinement in a triangular aperture: Experimental evidence and numerical calculations ,” Phys. Rev. B   72 , 165111 –6 ( 2005 ).
[Crossref]

J. Koglin , U.C. Fischer , and H. Fuchs , “ Material contrast in scanning near-field optical microscopy at 1–10 nm resolution ,” Phys. Rev. B   55 , 7977 ( 1997 ).
[Crossref]

Phys. Rev. Lett. (2)

A. Naber , D. Molenda , U.C. Fischer , H.J. Maas , C. Höppener , N. Lu , and H. Fuchs , “ Enhanced Light Confinement in a Near-Field Optical Probe with a Triangular Aperture ,” Phys. Rev. Lett.   89 , 210801 ( 2002 ).
[Crossref] [PubMed]

H.G. Frey , S. Witt , K. Felderer , and R. Guckenberger , “ High-Resolution Imaging of Single Fluorescent Molecules with the Optical Near-Field of a Metal Tip ,” Phys. Rev. Lett.   93 , 200801 ( 2004 ).
[Crossref] [PubMed]

Science (1)

E. Betzig and R. Chichester , “ Single Molecules Observed by Near-Field Scanning Optical Microscopy ,” Science   262 , 1422 ( 1993 ).
[Crossref] [PubMed]

Other (1)

E. Bortchagovsky , G. Colas des Francs , D. Molenda , A. Naber , and U.C. Fischer , “ On the confinement of the electric near field at optically excited triangular apertures in a metal film ” (submitted).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Electron micrographs of an aluminum-coated tetrahedral glass tip before (left) and after (right) focused ion beam milling. Cutting off the metal-coated, ultra-sharp glass tip routinely results in a well-shaped triangular nano-aperture embedded in a flat aluminum end face.

Fig. 2.
Fig. 2.

Scalar electric field intensity calculated near a circular (a) and a triangular nano-aperture (b). The aluminum slab (thickness d=100 nm) separates a glass and an air half-space; the aperture is filled with glass. For the simulation, the aperture is assumed to be illuminated from the glass side by a monochromatic plane wave (λ=633 nm) which is linearly polarized parallel to the slab (white arrows). The intensity map is calculated at the air side in a plane 10 nm below the film (see also Fig. 5(a)). Intensities are normalized to the respective maximum values.

Fig. 3.
Fig. 3.

Near-field optical fluorescence image of randomly oriented TDI molecules embedded in a 10-nm-thin PMMA film. The molecules are excited by means of a triangular aperture probe. The aperture is aligned relative to the sample as indicated by the white triangle. The white double-arrow represents the incident beam polarization. For an enlarged view of the framed area, see Fig. 4.

Fig. 4.
Fig. 4.

(a,b) Enlarged view of the framed sample area in Fig. 3 for two different polarization directions of the incident light (indicated by double-arrows). As a result of the polarization rotation the intensity maximum and distribution of the fluorescence spots drastically changed. The different shape of the spots within an image is caused by different orientations of single molecules and represents a map of the electric field component at the triangular aperture in direction of the molecular dipole. Integration time per pixel was 20 ms. (c) Cross-sections along polarization direction through the center of the fluorescence spots M1-M4 in (a).

Fig. 5.
Fig. 5.

(a) Numerical model for the simulation of fluorescence patterns caused by single molecules excited through a triangular aperture. The triangular aperture is illuminated at normal incidence with a plane wave which is linearly polarized either perpendicular (α=0°) or parallel (α=90°) to the left aperture edge. The orientation of the absorption dipole moment is represented by the two spherical angles θ and φ. (b) Calculated fluorescence maps for various dipole moment orientations organized in two panels for the two polarization directions α=0° and α=90°. The color scale of each image has been normalized with respect to its maximum intensity value. The number in the upper right corner displays the relative normalization value in percent.

Fig. 6.
Fig. 6.

Comparison of the measured fluorescence patterns (upper row) to the simulated intensity maps I(x,y) (lower row) for the molecules M1 to M4 in Fig. 4(a). For each molecule the maximum intensity of the simulated maps was fitted to the experimental ones without changing the intensity ratio of the two maps for α=0° and α=90°. The deduced dipole moment orientation of each molecule is shown below the images.

Fig. 7.
Fig. 7.

Square of the electric field components in x-, y- and z-direction at a 50-nm-sized triangular aperture for an illuminating beam polarized normal (upper row) or parallel (lower row) to the left edge. The intensities are normalized to the maximum intensity of the upper left image.

Metrics