Abstract

A long plasma channel, formed due to the dynamic balance between the nonlinear self-focusing and the plasma defocusing in the propagation of intense femtosecond laser pulses in air, is demonstrated to be able to continuously propel a paper airplane without complicated focusing optics. The maximum coupling coefficient generated by the plasma channel is found to be more than 8.5 dyne/W. In the plasma channel, the detonation wave generation with the air ionization is found to be the propulsive source.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Kantrowitz, " Propulsion to orbit by ground-based laser," Astronautics & Aeronautics (A/A) 10, 74-76 (1972).
  2. S. A. Metz, "Impulse loading of targets by subnanosecond laser pulses," Appl. Phys. Lett. 22, 211-213 (1973).
    [CrossRef]
  3. S. A. Metz, L. R. Hettche, R. L. Stegman and J. T. Schriempt, "Effects of beam intensity on target response to high-intensity CO2 laser radiation," J. Appl. Phys. 46, 1634-1642 (1975).
    [CrossRef]
  4. A. N. Pirri, "Theory for momentum transfer to a surface with a high-power laser," Phys. Fluids 16, 1435-1440 (1973)
    [CrossRef]
  5. D. Darling , "The encyclopedia of astrobiology, astronomy, and spaceflight," <a href="http://www.daviddarling."> Info/encyclopedia/laserprop.html.http://www.daviddarling.</a>
  6. A. N. Pirri, M. J. Monsler, and P. E. Nebolsine, "Propulsion by absorption of laser radiation.," AIAA J. 12, 1254-1261 (1974).
    [CrossRef]
  7. T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, "Microairplane propelled by laser driven exotic target," Appl. Phys. Lett. 80, 4318-4320 (2002).
    [CrossRef]
  8. Z. Q. Hao, J. Yu, J. Zhang, Y. T. Li, X. H. Yuan, Z. Y. Zheng, P Wang, Z. H. Wang, W. J. Ling, Z. Y. Wei, "Acoustic diagnostics of plasma channels induced by intense femtosecond laser pulses in air," Chin. Phys. Lett. 22, 636-639 (2005) .
    [CrossRef]
  9. J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou and J. P. Wolf, "Sonographic probing of laser filaments in air," Appl. Opt. 42, 7117-7120 (2003).
    [CrossRef]
  10. B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J. C. Kieffer and H. Pépin, " Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air," Phys. Plasmas 6, 1615-1621 (1999).
    [CrossRef]
  11. A. Braun, G. Korn, X. Liu, D. Du, J. Squier and G. Mourou, " Self-channeling of high-peak-power femtosecond laser pulses in air," Opt. Lett. 20, 73-75 (1995).
    [CrossRef] [PubMed]
  12. H Yang, J Zhang, W. Yu, Y. J. Li and Z. Y. Wei, "Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air," Phys. Rev. E 66, 016406 (2002).
    [CrossRef]
  13. H Yang, J Zhang, W. Yu, Y. J. Li and Z. Y. Wei, "Long plasma channels generated by femtosecond laser pulses," Phys. Rev. E 65, 016406 (2001).
    [CrossRef]
  14. A. Becker, N. Aközbek, K. Vuayalakshmi, E. M. Bowden, S. L. Chin, "Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas," Appl. Phys. B 73, 287-290 (2001).
    [CrossRef]
  15. A. V. Pakhomov and D. A. Gregory, "Ablative laser propulsion: an old concept revisited," AIAA J. 38, 725-727 (2002).
    [CrossRef]
  16. Z. Y. Zheng, X. Lu, J. Zhang, Z. Q. Hao, X. H. Yuan, Z. H. Wang, "Experimental study on the meomentum couplin gefficiency of laser plasma," Acta Phys. Sin. 54, 192-196 (2005) (in Chinese).

Acta Phys. Sin. (1)

Z. Y. Zheng, X. Lu, J. Zhang, Z. Q. Hao, X. H. Yuan, Z. H. Wang, "Experimental study on the meomentum couplin gefficiency of laser plasma," Acta Phys. Sin. 54, 192-196 (2005) (in Chinese).

AIAA J. (2)

A. V. Pakhomov and D. A. Gregory, "Ablative laser propulsion: an old concept revisited," AIAA J. 38, 725-727 (2002).
[CrossRef]

A. N. Pirri, M. J. Monsler, and P. E. Nebolsine, "Propulsion by absorption of laser radiation.," AIAA J. 12, 1254-1261 (1974).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Becker, N. Aközbek, K. Vuayalakshmi, E. M. Bowden, S. L. Chin, "Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas," Appl. Phys. B 73, 287-290 (2001).
[CrossRef]

Appl. Phys. Lett. (2)

T. Yabe, C. Phipps, M. Yamaguchi, R. Nakagawa, K. Aoki, H. Mine, Y. Ogata, C. Baasandash, M. Nakagawa, E. Fujiwara, K. Yoshida, A. Nishiguchi, "Microairplane propelled by laser driven exotic target," Appl. Phys. Lett. 80, 4318-4320 (2002).
[CrossRef]

S. A. Metz, "Impulse loading of targets by subnanosecond laser pulses," Appl. Phys. Lett. 22, 211-213 (1973).
[CrossRef]

Astronautics & Aeronautics (1)

A. Kantrowitz, " Propulsion to orbit by ground-based laser," Astronautics & Aeronautics (A/A) 10, 74-76 (1972).

Chin. Phys. Lett. (1)

Z. Q. Hao, J. Yu, J. Zhang, Y. T. Li, X. H. Yuan, Z. Y. Zheng, P Wang, Z. H. Wang, W. J. Ling, Z. Y. Wei, "Acoustic diagnostics of plasma channels induced by intense femtosecond laser pulses in air," Chin. Phys. Lett. 22, 636-639 (2005) .
[CrossRef]

J. Appl. Phys. (1)

S. A. Metz, L. R. Hettche, R. L. Stegman and J. T. Schriempt, "Effects of beam intensity on target response to high-intensity CO2 laser radiation," J. Appl. Phys. 46, 1634-1642 (1975).
[CrossRef]

Opt. Lett. (1)

Phys. Fluids (1)

A. N. Pirri, "Theory for momentum transfer to a surface with a high-power laser," Phys. Fluids 16, 1435-1440 (1973)
[CrossRef]

Phys. Plasmas (1)

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J. C. Kieffer and H. Pépin, " Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air," Phys. Plasmas 6, 1615-1621 (1999).
[CrossRef]

Phys. Rev. E (2)

H Yang, J Zhang, W. Yu, Y. J. Li and Z. Y. Wei, "Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air," Phys. Rev. E 66, 016406 (2002).
[CrossRef]

H Yang, J Zhang, W. Yu, Y. J. Li and Z. Y. Wei, "Long plasma channels generated by femtosecond laser pulses," Phys. Rev. E 65, 016406 (2001).
[CrossRef]

Other (1)

D. Darling , "The encyclopedia of astrobiology, astronomy, and spaceflight," <a href="http://www.daviddarling."> Info/encyclopedia/laserprop.html.http://www.daviddarling.</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the setup for measurement the coupling coefficient along the plasma channel propagation.

Fig. 2.
Fig. 2.

(a) A typical image of a portion of a laser plasma channel recorded by a charge-coupled device (CCD). (b) Flight trajectories of the paper airplane on the air-cushion track.

Fig. 3
Fig. 3

The sound signal (solid circle) and the coupling coefficient (open square) as a function of the plasma channel propagation for a focal lens f=4 m.

Fig. 4
Fig. 4

Comparison the propulsive length with the plasma channel length with 36 mJ laser energy.

Fig. 5
Fig. 5

The averaged coupling coefficient in the “propulsive length” as a function of the plasma channel length.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E ( z ) E ( 0 ) ( 1 β z )

Metrics