Abstract

We report a room temperature Fe:ZnSe laser in gain-switched operation and tuning over the 3.9 – 4.8μm spectral range. Mid-IR emission of Fe2+:ZnSe was studied under three regimes of excitation: ordinary optical (2.92μm) excitation of 5T2 excited state of Fe2+; excitation via 5E level of Cr co-dopant (1.56μm); and excitation via photo-ionization transition of Fe2+ (0.532μm). The energy transfer from Cr2+ (5E level) to Fe+ (5T2 level) under 1.56μm wavelength excitation was observed and resulted in simultaneous room temperature emission of Fe:Cr:ZnSe crystal over ultra-broadband spectral range of 2–3 and 3.5–5μm. We also report the observation of mid-IR emission at 3.5–5μm induced by 2+->3+->-2+ ionization transitions of the iron ions in Fe:ZnSe.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, "Transition Metal-Doped Zinc Chalcogenides: Spectroscopy and Laser Demonstration of a New Class of Gain Media," IEEE J. Quantum Electron. 32, 885-895 (1996).
    [CrossRef]
  2. R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, "Cr2+-Doped Zinc Chalcogenides as Efficient, Widely Tunable Mid-Infrared Lasers," IEEE J. Quantum Electron. 33/4, 609-617 (1997).
    [CrossRef]
  3. I. T. Sorokina, "Cr2+-doped II-VI materials for lasers and nonlinear optics," Opt. Mater. 26, 395-412 (2004).
    [CrossRef]
  4. P. B. Klein, J. E. Furneaux, and R. L. Henry, "Laser oscillation at 3.53 m from Fe2+ in n-InP:Fe," Appl. Phys. Lett. 42, 638 (1983).
    [CrossRef]
  5. J. J. Adams, C. Bibeau, R. H. Page, D. M. Krol, L. H. Furu, and S. A. Payne, "4.0-4.5 m lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material," Opt. Lett. 24, 1720 (1999).
    [CrossRef]
  6. V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar'kov, M. P. Frolov, "Efficient IR Fe:ZnSe laser continuously tunable in the spectral range from 3.77 to 4.40 ìm," Quantum Electron. 34(10), 912-914 (2004).
    [CrossRef]
  7. A. A. Voronov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar'kov, M. P. Frolov, "Laser parameters of a Fe:ZnSe laser crystal in the 85-255K temperature range," Quantum Electron. 35(9), 809-812 (2005).
    [CrossRef]
  8. V. Yu. Ivanov, M. Godlewski, A. Szczerbakow, A. Omel'chuk, A. Davydov, N. Zhavoronkov, G. Raciukaitis, "Optically Pumped Mid - Infrared Stimulated Emission of ZnSe: Cr Crystals," Acta Physica Polonica A 105(6), 553-558 (2004).
  9. A. Gallian, V. V. Fedorov, J. Kernal, S. B. Mirov, V. V. Badikov, "Laser Oscillation at 2.4 µm from Cr2+ in ZnSe Optically Pumped over Cr Ionization Transitions," in Advanced Solid-State Photonics 2005 Technical Digest on CD-ROM (The Optical Society of America, Washington, DC, 2005), MB12.
  10. D. E. McCumber, "Einstein relations connecting broadband emission and absorption spectra," Phys. Rev. 136(4A), 954-957 (1964).
    [CrossRef]
  11. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
    [CrossRef]

Acta Physica Polonica A

V. Yu. Ivanov, M. Godlewski, A. Szczerbakow, A. Omel'chuk, A. Davydov, N. Zhavoronkov, G. Raciukaitis, "Optically Pumped Mid - Infrared Stimulated Emission of ZnSe: Cr Crystals," Acta Physica Polonica A 105(6), 553-558 (2004).

Advanced Solid-State Photonics 2005

A. Gallian, V. V. Fedorov, J. Kernal, S. B. Mirov, V. V. Badikov, "Laser Oscillation at 2.4 µm from Cr2+ in ZnSe Optically Pumped over Cr Ionization Transitions," in Advanced Solid-State Photonics 2005 Technical Digest on CD-ROM (The Optical Society of America, Washington, DC, 2005), MB12.

Appl. Phys. Lett.

P. B. Klein, J. E. Furneaux, and R. L. Henry, "Laser oscillation at 3.53 m from Fe2+ in n-InP:Fe," Appl. Phys. Lett. 42, 638 (1983).
[CrossRef]

IEEE J. Quantum Electron.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, "Transition Metal-Doped Zinc Chalcogenides: Spectroscopy and Laser Demonstration of a New Class of Gain Media," IEEE J. Quantum Electron. 32, 885-895 (1996).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, "Cr2+-Doped Zinc Chalcogenides as Efficient, Widely Tunable Mid-Infrared Lasers," IEEE J. Quantum Electron. 33/4, 609-617 (1997).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

Opt. Lett.

Opt. Mater.

I. T. Sorokina, "Cr2+-doped II-VI materials for lasers and nonlinear optics," Opt. Mater. 26, 395-412 (2004).
[CrossRef]

Phys. Rev.

D. E. McCumber, "Einstein relations connecting broadband emission and absorption spectra," Phys. Rev. 136(4A), 954-957 (1964).
[CrossRef]

Quantum Electron.

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar'kov, M. P. Frolov, "Efficient IR Fe:ZnSe laser continuously tunable in the spectral range from 3.77 to 4.40 ìm," Quantum Electron. 34(10), 912-914 (2004).
[CrossRef]

A. A. Voronov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar'kov, M. P. Frolov, "Laser parameters of a Fe:ZnSe laser crystal in the 85-255K temperature range," Quantum Electron. 35(9), 809-812 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental set-up for spectroscopic and laser characterization of Fe:ZnSe.

Fig. 2.
Fig. 2.

Absorption spectra of Fe:ZnSe (i) at RT, Fe:Cr:ZnSe (ii) at RT and Fe:ZnSe (iii) at 20K.

Fig. 3.
Fig. 3.

(a) Room temperature emission of Fe:ZnSe crystal under 2.92 μm excitation ((i) Epump= 2 mJ, (ii) Epump=5 mJ, (iii) Epump=8 mJ); (b) Emission of Fe:Cr:ZnSe (iv) and Cr:ZnSe (v) crystal under 1.56 μm excitation.

Fig. 4.
Fig. 4.

Room temperature absorption (i) and emission cross-sections (ii) and (iii). Emission cross-section calculated using reciprocity method (ii) and Fuchtbauer-Landenburg equation (iii)

Fig. 5.
Fig. 5.

Input-output curve for RT gain-switched Fe:ZnSe lasing in nonselective cavity.

Fig. 6.
Fig. 6.

Tuning curve of RT gain-switched Fe:ZnSe laser.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ em ( λ ) = λ 5 I ( λ ) 8 πc n 2 τ rad I ( λ ) λdλ ,
τ rad = g u g l 1 8 π n 2 c 1 λ 4 σ ab ( ν )
σ em ( ν ) = σ ab ( ν ) Z l Z u exp ( [ E zl ] kT ) ,
Z u = j g j exp ( E j kT )
Z l = i g i exp ( E i kT )

Metrics