Abstract

We report on time-resolved measurements of the plasma evolution during metal ablation with ultrashort laser pulses in the range from 200 fs to 3.3 ps. The plasma transmission exhibits two distinctive minima. Almost total attenuation is observed a few nanoseconds after the ablation pulse, while a second decrease of the transmission to approximately 50% is observed after about 150 ns. Images taken with a gated ICCD-camera confirm these data and allow determining the expansion velocity of the plasma plume. The attenuation in the first nanoseconds can be attributed to electrons and sublimated mass emitted from the target surface, while attenuation after several 10 ns is due to particles and droplets after a thermal boiling process. The possibility of a normal or an explosive boiling process, also called phase explosion, is discussed. Despite of the physical insight into the ablation process, these data provide valuable information for scaling the speed of ultrashort pulse laser materials processing in a fluence regime of several J/cm2 since they allow estimating the maximum usable pulse repetition rate.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. F. Dausinger, F. Lichter and H. Lubatschowski, Femtosecond Technology for Technical and Medical Applications (Springer, Heidelberg, 2004).
    [CrossRef]
  2. D. Bäuerle, Laser Processing and Chemistry, 3rd ed. (Springer, Berlin-Heidelberg, 2000)
  3. R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo and S. S. Mao, "Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation," Appl. Phys. A 69, S887-S894 (1999)
    [CrossRef]
  4. S. S. Mao, X. Mao, R. Greif and R. E. Russo, "Initiation of an early-stage plasma during picosecond laser ablation of solids," Appl. Phys. Lett. 77, 2464-2466 (2000)
    [CrossRef]
  5. B. Salle, O. Gobert, P. Meynadier, M. Perdrix, G. Petite and A. Semerok, "Femtosecond and picosecond laser microablation: ablation efficiency and laser microplasma expansion," Appl. Phys. A 69, S381-S383 (1999)
    [CrossRef]
  6. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, H. Schüler and D. von der Linde, "Dynamics of femtosecond laser induced abaltion from solid surfaces," in High-Power Laser Ablation, C. R. Phipps, ed., Proc. SPIE 3343, 46-57 (1998)
    [CrossRef]
  7. K. Sokolowski-Tinten, J. Bialkowski, M. Boing, A. Cavalleri and D. von der Linde, "Bulk phase explosion and surface boiling during short pulse laser ablation of semiconductors," in Quantum Electronics and Laser Science Conference (OSA Technical Digest, Optical Society of America, Washington, DC, 1999) pp. 231-232
  8. B. Rethfeld, K. Sokolowski-Tinten, V. V. Temnov, S. I. Kudryashov, J. Bialkowski, A. Cavalleri and D. von der Linde, "Ablation dynamics of solids heated by femtosecond laser pulses," in Nonresonant Laser-Matter Interaction, M. N. Libenson, ed., Proc. SPIE 4423, 186-196 (2001)
    [CrossRef]
  9. R. Kelly and A. Miotello, "Contribution of vaporization and boiling to thermal-spike sputtering by ions or laser pulses," Phys. Rev. E 60, 2616-2625 (1999)
    [CrossRef]
  10. X. Xu and D. A. Willis, "Non-Equilibrium Phase Change in Metal Induced by Nanosecond Pulsed Laser Irradiation," J. Heat Transfer 124, 293-298 (2002)
    [CrossRef]
  11. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben and A. Tünnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996)
    [CrossRef]
  12. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen and H. Welling, "Ablation of metals by ultrashort laser pulses," J. Opt. Soc. Am. B 14, 2716-2722 (1997)
    [CrossRef]
  13. S. I. Anisimov and B. S. Luk’yanchuk, "Selected problems of laser ablation theory," Physics-Uspekhi 45 3, 293-324 (2002)
    [CrossRef]
  14. V. P. Carey, Liquid-Vapor Phase-Change Phenomena, (Hemisphere, Washington, 1992)
  15. N. M. Bulgakova and A. V. Bulgakov, "Pulsed laser ablation of solids: transition from normal vaporization to phase explosion," Appl. Phys. A 73, 199-208 (2001)
    [CrossRef]
  16. B. Le Drogoff, J. Margot, F. Vidal, S. Laville, M. Chaker, M. Sabsabi, T. W. Johnson and O. Barthelemy, "Influence of the laser pulse duration on laser-produced plasma properties," Plasma Sources Sci. Technol. 13, 223-230 (2004)
    [CrossRef]
  17. C. J. Nonhoff, Material Processing with Nd-Lasers, (Electrochemical Publications Lim., Ayr, 1998)
  18. W. Theobald, R. Häßner, R. Kingham, R. Sauerbrey, R. Fehr, D. O. Gericke, M. Schlanges,W.-D. Kraeft and K. Ishikawa, "Electron densities, temperatures, and the dielectric function of femtosecond-laser-produced plasmas," Phys. Rev. E 59, 3544-3553 (1999)
    [CrossRef]
  19. V. Craciun, N. Bassim, R. K. Singh, D. Craiciun, J. Hermann and C. Boulmer-Leborgne, "Laser-induced explosive boiling during nanosecond laser abaltion of silicon," Appl. Surf. Sci. 186, 288-292 (2002)
    [CrossRef]
  20. A. Yoshida, "Critical phenomenon analysis of surface tension of liquid metals," J. Jpn. Inst. Met. 58, 1161-1168 (1994)

Appl. Phys. A (4)

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo and S. S. Mao, "Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation," Appl. Phys. A 69, S887-S894 (1999)
[CrossRef]

B. Salle, O. Gobert, P. Meynadier, M. Perdrix, G. Petite and A. Semerok, "Femtosecond and picosecond laser microablation: ablation efficiency and laser microplasma expansion," Appl. Phys. A 69, S381-S383 (1999)
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben and A. Tünnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996)
[CrossRef]

N. M. Bulgakova and A. V. Bulgakov, "Pulsed laser ablation of solids: transition from normal vaporization to phase explosion," Appl. Phys. A 73, 199-208 (2001)
[CrossRef]

Appl. Phys. Lett. (1)

S. S. Mao, X. Mao, R. Greif and R. E. Russo, "Initiation of an early-stage plasma during picosecond laser ablation of solids," Appl. Phys. Lett. 77, 2464-2466 (2000)
[CrossRef]

Appl. Surf. Sci. (1)

V. Craciun, N. Bassim, R. K. Singh, D. Craiciun, J. Hermann and C. Boulmer-Leborgne, "Laser-induced explosive boiling during nanosecond laser abaltion of silicon," Appl. Surf. Sci. 186, 288-292 (2002)
[CrossRef]

J. Heat Transfer (1)

X. Xu and D. A. Willis, "Non-Equilibrium Phase Change in Metal Induced by Nanosecond Pulsed Laser Irradiation," J. Heat Transfer 124, 293-298 (2002)
[CrossRef]

J. Jpn. Inst. Met. (1)

A. Yoshida, "Critical phenomenon analysis of surface tension of liquid metals," J. Jpn. Inst. Met. 58, 1161-1168 (1994)

J. Opt. Soc. Am. B (1)

Phys. Rev. E (2)

W. Theobald, R. Häßner, R. Kingham, R. Sauerbrey, R. Fehr, D. O. Gericke, M. Schlanges,W.-D. Kraeft and K. Ishikawa, "Electron densities, temperatures, and the dielectric function of femtosecond-laser-produced plasmas," Phys. Rev. E 59, 3544-3553 (1999)
[CrossRef]

R. Kelly and A. Miotello, "Contribution of vaporization and boiling to thermal-spike sputtering by ions or laser pulses," Phys. Rev. E 60, 2616-2625 (1999)
[CrossRef]

Physics-Uspekhi 45 (1)

S. I. Anisimov and B. S. Luk’yanchuk, "Selected problems of laser ablation theory," Physics-Uspekhi 45 3, 293-324 (2002)
[CrossRef]

Plasma Sources Sci. Technol. (1)

B. Le Drogoff, J. Margot, F. Vidal, S. Laville, M. Chaker, M. Sabsabi, T. W. Johnson and O. Barthelemy, "Influence of the laser pulse duration on laser-produced plasma properties," Plasma Sources Sci. Technol. 13, 223-230 (2004)
[CrossRef]

Proc. SPIE (2)

B. Rethfeld, K. Sokolowski-Tinten, V. V. Temnov, S. I. Kudryashov, J. Bialkowski, A. Cavalleri and D. von der Linde, "Ablation dynamics of solids heated by femtosecond laser pulses," in Nonresonant Laser-Matter Interaction, M. N. Libenson, ed., Proc. SPIE 4423, 186-196 (2001)
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, H. Schüler and D. von der Linde, "Dynamics of femtosecond laser induced abaltion from solid surfaces," in High-Power Laser Ablation, C. R. Phipps, ed., Proc. SPIE 3343, 46-57 (1998)
[CrossRef]

Quantum Electronics and Laser Science 99 (1)

K. Sokolowski-Tinten, J. Bialkowski, M. Boing, A. Cavalleri and D. von der Linde, "Bulk phase explosion and surface boiling during short pulse laser ablation of semiconductors," in Quantum Electronics and Laser Science Conference (OSA Technical Digest, Optical Society of America, Washington, DC, 1999) pp. 231-232

Other (4)

F. Dausinger, F. Lichter and H. Lubatschowski, Femtosecond Technology for Technical and Medical Applications (Springer, Heidelberg, 2004).
[CrossRef]

D. Bäuerle, Laser Processing and Chemistry, 3rd ed. (Springer, Berlin-Heidelberg, 2000)

C. J. Nonhoff, Material Processing with Nd-Lasers, (Electrochemical Publications Lim., Ayr, 1998)

V. P. Carey, Liquid-Vapor Phase-Change Phenomena, (Hemisphere, Washington, 1992)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic experimental diagram of time-resolved plasma attenuation measurements.

Fig. 2.
Fig. 2.

Temporal evolution of the plasma luminescence in horizontal and vertical direction for the ablation of C75 steel with a pulse duration of 200 fs and a fluence of 20 J/cm2.

Fig. 3.
Fig. 3.

(a) Transmission through the plasma 4 ns after the ablation pulse at a probe wavelength of 400 nm. (b): Transmission through the plasma 90 ns after the ablation pulse at a probe wavelength of 525 nm. The shock wave front is marked with a red dotted line on the left side of the image. Both Images were taken with a gated ICCD-Camera during the ablation of C75 steel with 200 fs pulses at an energy density of 20 J/cm2. The target surface is marked with a white line.

Fig. 4.
Fig. 4.

Expansion of shock wave and vapor front during the ablation of C75 steel using a pulse duration of 200 fs and an energy density of 20 J/cm2. Expansion of the shock wave is plotted in blue colors, dark blue for vertical, i.e. normal to surface, and light blue for horizontal directions. Expansion of the second ablation front is plotted in red colors.

Fig. 5.
Fig. 5.

(a) Temporal transmission of probe pulses with a wavelength of 400 nm for the ablation of Aluminum with 200 fs pulses at a fluence of 17 J/cm2. (b): Temporal transmission of probe pulses with a wavelength of 1050 nm for ablation with 3.3 ps pulses at 18 J/cm2. Data for copper are marked red, data for steel (1.00344) blue. In both graphs the experimental data are plotted in dots, while results of simulations are shown as lines.

Fig. 6.
Fig. 6.

(a) Temporal transmission of probe pulses with a wavelength of 1050 nm in a steel (1.00344) plasma ablated with 3.3 ps pulse duration. The fluence was changed from 0.4 J/cm2 (green dots), 4 J/cm2 (red dots), 11 J/cm2 (blue dots) to 18 J/cm2 (black dots). (b): Attenuation curves for different probe wavelengths of 525 nm (green) and 1050 nm (red). Calculations are plotted as lines.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

J hn ( t ) = N l 3 χ π·m exp ( 16 πχ 3 k B T l ( t ) ( p ve ( T l ) p l ( T l ) ) ) exp ( τ hn ( T l ) t )
linear expansion similar to vacuum 0 < t < ( M 5 ρ g 2 E sw 3 ) 1 6 R ( t ) ( E sw ζ g M v ) 1 2 ·t
expansion in gases ( M v 5 ρ g 2 E sw 3 ) 1 6 < t < ( E sw 2 ρ g 3 p g 5 ) 1 6 R ( t ) ξ sw ( E sw ρ g · t 2 ) n
α IB [ cm 1 ] 1.37 · 10 35 λ [ μm ] 3 N e [ cm 3 ] 2 T e [ K ] { 1 exp ( ħω k B T e ) }
N e = N e 0 · l opt ( l opt + R ( t ) )
T e = T e 0 · ( l opt ( l opt + R ( t ) ) ) 5 3 1

Metrics