Abstract

A high-power narrow-linewidth laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The external cavity laser system uses a new tapered amplifier with a super-large optical-cavity (SLOC) design that leads to improved performance of the external cavity diode lasers. The laser system is tunable over a 29 nm range centered at 802 nm. As high as 1.95 W output power is obtained at 803.84 nm, and an output power above 1.5 W is achieved from 793 to 812 nm at operating current of 3.0 A. The emission linewidth is below 0.004 nm and the beam quality factor M 2 is below 1.3 over the 29 nm tunable range. As an example of application, the laser system is used as a pump source for the generation of 405 nm blue light by single-pass frequency doubling in a periodically poled KTiOPO4. An output power of 24 mW at 405 nm, corresponding to a conversion efficiency of 0.83%/W is attained.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Goldberg and M. K. Chun, "Injection locking characteristics of a 1 W broad stripe laser diode," Appl. Phys. Lett. 53, 1900-1902 (1988).
    [CrossRef]
  2. S. MacCormack, J. Feinberg, and M. H. Garrett, "Injection locking a laser-diode array with a phase-conjugate beam," Opt. Lett. 19, 120-122 (1994).
    [CrossRef] [PubMed]
  3. M. Løbel, P. M. Petersen, and P. M. Johansen, "Single-mode operation of a laser-diode array with frequency-selective phase-conjugate feedback," Opt. Lett. 23, 825-827 (1998).
    [CrossRef]
  4. V. Raab, D. Skoczowsky, and R. Menzel, "Tuning high-power laser diodes with as much as 0.38 W of power and M2 = 1.2 over a range of 32 nm with 3-GHz bandwidth," Opt. Lett. 27, 1995-1997 (2002).
    [CrossRef]
  5. H. Wenzel, B. Sumpf, and G. Erbert, "High-brightness diode laser," C. R. Physique 4, 649-661 (2003).
    [CrossRef]
  6. S. O’Brien, D. F. Welch, R. A. Parke, D. Mehuys, K. Dzurko, R. J. Lang, R. Waarts, and D. Scifres, "Operating characteristics of a high-power monolithically integrated flared amplifier master oscillator power amplifier," IEEE J. Quantum Electron. 29, 2052-2057 (1993).
    [CrossRef]
  7. S. O’Brien, R. Lang, R. Parke, J. Major, D. F. Welch, and D. Mehuys, "2.2-W continuous-wave diffraction-limited monolithically integrated master oscillator power amplifier at 854 nm," IEEE Photonics Technol. Lett. 9, 440-442 (1997).
    [CrossRef]
  8. S. O’Brien, A. Schoenfelder, and R. J. Lang, " 5-W diffraction-limited InGaAs broad-area flared amplifier at 970 nm," IEEE Photonics Technol. Lett. 9, 1217-1219 (1997).
    [CrossRef]
  9. D. Mehuys, L. Goldberg, and D. F. Welch, "5.25-W CW near-diffraction-limited tapered-stripe semiconductor optical amplifier," IEEE Photonics Technol. Lett. 5, 1179-1182 (1997).
    [CrossRef]
  10. D. M. Cornwell, Jr., and H. Thomas, "High-power (>0.9 W cw) diffraction-limited semiconductor laser based on a fiber Bragg grating external cavity," Appl. Phys. Lett. 70, 694-695 (1997).
    [CrossRef]
  11. A. K. Goyal, P. Gavrilovic, and H. Po, "1.35 W of stable single-frequency emission from an external cavity tapered oscillator utilizing fiber Bragg grating feedback," Appl. Phys. Lett. 73, 575-577 (1998).
    [CrossRef]
  12. C. Pedersen and R. S. Hansen, "Single frequency, high power, tapered diode laser using phase-conjugated feedback," Opt. Express 13, 3961-3968 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3961.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3961</a>
    [CrossRef] [PubMed]
  13. D. Mehuys, D. Welch, and D. Scifres, "1 W cw, diffraction-limited, tunable external-cavity semiconductor laser," Electron. Lett. 29, 1254-1255 (1993).
    [CrossRef]
  14. R. J. Jones, S. Gupta, R. K. Jain, and J. N. Walpole, "Near-diffraction-limited high power (~1 W) single longitudinal mode CW diode laser tunable from 960 to 980 nm," Electron. Lett. 31, 1668-1669 (1995).
    [CrossRef]
  15. A. K. Goyal, P. Gavrilovic, and H. Po, "Stable single-frequency operation of a high-power external cavitytapered diode laser at 780 nm," Appl. Phys. Lett. 71, 1296-1298 (1997).
    [CrossRef]
  16. A. Knauer, G. Erbert, R. Staske, B. Sumpf, H. Wenzel, and M. Weyers, "High-power 808-nm lasers with a super-large optical cavity," Semicond. Sci. Technol. 20, 621-624 (2005).
    [CrossRef]
  17. E. Samsøe, P. M. Petersen, S. Andersson-Engels, and P. E. Andersen, "Second-harmonic generation of 405-nm light using periodically poled KTiOPO4 pumped by external-cavity laser diode with double grating feedback," Appl. Phys. B 80, 861-864 (2005).
    [CrossRef]

Appl. Phys. B (1)

E. Samsøe, P. M. Petersen, S. Andersson-Engels, and P. E. Andersen, "Second-harmonic generation of 405-nm light using periodically poled KTiOPO4 pumped by external-cavity laser diode with double grating feedback," Appl. Phys. B 80, 861-864 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

A. K. Goyal, P. Gavrilovic, and H. Po, "Stable single-frequency operation of a high-power external cavitytapered diode laser at 780 nm," Appl. Phys. Lett. 71, 1296-1298 (1997).
[CrossRef]

D. M. Cornwell, Jr., and H. Thomas, "High-power (>0.9 W cw) diffraction-limited semiconductor laser based on a fiber Bragg grating external cavity," Appl. Phys. Lett. 70, 694-695 (1997).
[CrossRef]

A. K. Goyal, P. Gavrilovic, and H. Po, "1.35 W of stable single-frequency emission from an external cavity tapered oscillator utilizing fiber Bragg grating feedback," Appl. Phys. Lett. 73, 575-577 (1998).
[CrossRef]

L. Goldberg and M. K. Chun, "Injection locking characteristics of a 1 W broad stripe laser diode," Appl. Phys. Lett. 53, 1900-1902 (1988).
[CrossRef]

C. R. Physique (1)

H. Wenzel, B. Sumpf, and G. Erbert, "High-brightness diode laser," C. R. Physique 4, 649-661 (2003).
[CrossRef]

Electron. Lett. (2)

D. Mehuys, D. Welch, and D. Scifres, "1 W cw, diffraction-limited, tunable external-cavity semiconductor laser," Electron. Lett. 29, 1254-1255 (1993).
[CrossRef]

R. J. Jones, S. Gupta, R. K. Jain, and J. N. Walpole, "Near-diffraction-limited high power (~1 W) single longitudinal mode CW diode laser tunable from 960 to 980 nm," Electron. Lett. 31, 1668-1669 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. O’Brien, D. F. Welch, R. A. Parke, D. Mehuys, K. Dzurko, R. J. Lang, R. Waarts, and D. Scifres, "Operating characteristics of a high-power monolithically integrated flared amplifier master oscillator power amplifier," IEEE J. Quantum Electron. 29, 2052-2057 (1993).
[CrossRef]

IEEE Photonics Technol. Lett. (3)

S. O’Brien, R. Lang, R. Parke, J. Major, D. F. Welch, and D. Mehuys, "2.2-W continuous-wave diffraction-limited monolithically integrated master oscillator power amplifier at 854 nm," IEEE Photonics Technol. Lett. 9, 440-442 (1997).
[CrossRef]

S. O’Brien, A. Schoenfelder, and R. J. Lang, " 5-W diffraction-limited InGaAs broad-area flared amplifier at 970 nm," IEEE Photonics Technol. Lett. 9, 1217-1219 (1997).
[CrossRef]

D. Mehuys, L. Goldberg, and D. F. Welch, "5.25-W CW near-diffraction-limited tapered-stripe semiconductor optical amplifier," IEEE Photonics Technol. Lett. 5, 1179-1182 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Semicond. Sci. Technol. (1)

A. Knauer, G. Erbert, R. Staske, B. Sumpf, H. Wenzel, and M. Weyers, "High-power 808-nm lasers with a super-large optical cavity," Semicond. Sci. Technol. 20, 621-624 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Vertical beam properties of the SLOC-structure used for the 810 nm tapered amplifier; (a) calculated vertical near field and refractive index, (b) measured vertical far field.

Fig. 2.
Fig. 2.

Power-voltage-current characteristics of 810 nm tapered laser. The device length L = 4 mm, length of the ridge waveguide LRW = 1 mm, taper angle φTR = 4°. The front facet had a reflectivity R f = 0.1%, the rear facet a R r = 94%.

Fig. 3.
Fig. 3.

Experimental set-up of the tapered diode laser system using a bulk diffraction grating external cavity. BS: beam splitter, HWP: half-wave plate, (the units are in mm).

Fig. 4.
Fig. 4.

Tuning curve of the tapered diode laser system at an operating current of 3.0 A.

Fig. 5.
Fig. 5.

The optical spectrum of the output beam from the tapered diode laser system at four different wavelengths at an operating current of 3.0 A.

Fig. 6.
Fig. 6.

Beam width measurement of the output beam from the tapered diode laser system for the slow axis at the wavelength of 798.14 nm (circles and red curve) and 804.04 nm (squares and black curve), at the operating current of 3.0 A. The curves represent hyperbola fits to the data.

Fig. 7.
Fig. 7.

Second harmonic power as a function of fundamental power. The squares are measured data; the curve is a quadratic fitting.

Metrics