Abstract

We present the characterization of the optical properties of integrated antiresonant reflecting optical (ARROW) waveguides with arch-shaped liquid cores. Optical mode shapes and coupling, waveguide loss, and polarization dependence are investigated. Waveguide loss as low as 0.26/cm with near-single-mode coupling and mode areas as small as 4.5μm2 are demonstrated. A detailed comparison to ARROW waveguides with rectangular cores is presented, and shows that arch-shaped cores are superior for many applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. W. E. Moerner, and D. P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Inst. 74, 3597 (2003).
    [CrossRef]
  2. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas: "A dielectric omnidirectional reflector," Science 282, 1679 (1998).
    [CrossRef] [PubMed]
  3. P. Russell, "Holey fiber concept spawns optical-fiber renaissance," Laser Focus World 38, 77 (2002).
  4. G. R. Hadley, J. Fleming, and S. Lin, "Bragg fiber design for linear polarization," Opt. Lett. 29, 809 (2004).
    [CrossRef] [PubMed]
  5. M. A. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13 (1986).
    [CrossRef]
  6. H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, "Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids," IEEE J. of Sel. Top. Quantum Electron. 11, 519 (2005
    [CrossRef]
  7. D. Yin, J. P. Barber, A. R. Hawkins, D. W. Deamer, and H. Schmidt, "Integrated optical waveguides with liquid cores," Appl. Phys. Lett. 85, 3477 (2004).
    [CrossRef]
  8. D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, "Integrated ARROW waveguides with hollow cores," Opt. Express 12, 2710 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2710">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2710</a>.
    [CrossRef] [PubMed]
  9. D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, "Highly efficient fluorescence detection in picoliter volume liquid-core waveguides," Appl. Phys. Lett. 87, 211111 (2005).
    [CrossRef]
  10. T. Delonge and H. Fouckhardt, "Integrated optical detection cell based on Bragg reflecting waveguides," J. Chromatogr. A 716, 135 (1995).
    [CrossRef]
  11. S. Campopiano , R. Bernini, L. Zeni, P. M Sarro, "Microfluidic sensor based on integrated optical hollow waveguides," Opt. Lett. 29, 1894 (2004).
    [CrossRef] [PubMed]
  12. J. P. Barber, D. B. Conkey, J. Lee, N. B. Hubbard, L. Howell, H. Schmidt, and A. R. Hawkins, "Fabrication of hollow waveguides with sacrificial aluminum cores," IEEE Photon. Technol. Lett. 17, 363 (2005).
    [CrossRef]
  13. B. A. Peeni, D. B. Conkey, J. P. Barber, R. T. Kelly, M. L. Lee, A. T. Woolley, and A. R. Hawkins, "Planar thin film device for capillary electrophoresis," Lab on a Chip 5, 501 (2005).
    [CrossRef] [PubMed]
  14. D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, "Waveguide loss optimization in hollow-core ARROW waveguides," Opt. Express 13, 9331 (2005) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-23-9331">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-23-9331</a>.
    [CrossRef] [PubMed]

Appl. Phys. Lett.

M. A. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

D. Yin, J. P. Barber, A. R. Hawkins, D. W. Deamer, and H. Schmidt, "Integrated optical waveguides with liquid cores," Appl. Phys. Lett. 85, 3477 (2004).
[CrossRef]

D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, "Highly efficient fluorescence detection in picoliter volume liquid-core waveguides," Appl. Phys. Lett. 87, 211111 (2005).
[CrossRef]

IEEE J. of Sel. Top. Quantum Electron.

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, "Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids," IEEE J. of Sel. Top. Quantum Electron. 11, 519 (2005
[CrossRef]

IEEE Photon. Technol. Lett.

J. P. Barber, D. B. Conkey, J. Lee, N. B. Hubbard, L. Howell, H. Schmidt, and A. R. Hawkins, "Fabrication of hollow waveguides with sacrificial aluminum cores," IEEE Photon. Technol. Lett. 17, 363 (2005).
[CrossRef]

J. Chromatogr. A

T. Delonge and H. Fouckhardt, "Integrated optical detection cell based on Bragg reflecting waveguides," J. Chromatogr. A 716, 135 (1995).
[CrossRef]

Lab on a Chip

B. A. Peeni, D. B. Conkey, J. P. Barber, R. T. Kelly, M. L. Lee, A. T. Woolley, and A. R. Hawkins, "Planar thin film device for capillary electrophoresis," Lab on a Chip 5, 501 (2005).
[CrossRef] [PubMed]

Laser Focus World

P. Russell, "Holey fiber concept spawns optical-fiber renaissance," Laser Focus World 38, 77 (2002).

Opt. Express

Opt. Lett.

Rev. Sci. Inst.

W. E. Moerner, and D. P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Inst. 74, 3597 (2003).
[CrossRef]

Science

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas: "A dielectric omnidirectional reflector," Science 282, 1679 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

SEM images of hollow-core ARROWs with rectangular and arch-shaped cross sections.

Fig. 2.
Fig. 2.

(a) Measured mode profile of arch-shaped liquid-core ARROW (w=9μm, L=6.9mm); (b) Normalized mode cross sections: symbols: experiment, lines: theory

Fig. 3.
Fig. 3.

(a) Mode coupling efficiency from single-mode fiber into hollow-core ARROWs versus core base width w . Circles: Arch-shaped core; squares: rectangular cores. (b) Mode images from arch-shaped (top) and rectangular cores (bottom) with identical mode area. Dashed white lines: core outlines.

Fig. 4.
Fig. 4.

(a) Transmitted optical power vs. sample length for different arched core widths. Symbols: experiment, lines: mono-exponential fit. (b) Mode loss of hollow-core ARROWs versus mode area. Circles: Arch-shaped core; squares: rectangular cores; Filled symbols: experiment; open symbols: theory.

Fig. 5.
Fig. 5.

(a) Transmitted intensity versus (linear) input polarization for arch-shaped liquid-core ARROW (w=12μm, L=5.4mm). Symbols: experiment; solid line: calculated fit to Eq. (1). (b) Polarization-dependent waveguide loss in arch-shaped ARROWs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I o = I i e α X L cos 2 ( θ ) + I i e α Y L sin 2 ( θ )

Metrics