Abstract

We propose a three-dimensional (3D) nanoscale metal heterowaveguide for nanoguiding of light in nanometric cross section. Finite-difference time-domain simulation reveals that a light beam with 35nm×55nm cross section can effectively propagate along the heterowaveguides with 2.84dB/μm energy loss. 3D nanoscale Mach-Zehnder interferometers and metal waveguide arrays constructed by such heterowaveguides show interesting sensing and array nanofocusing properties, implying potential applications in the fields of nanophotonics such as nanosensing, nanolithography, array imaging, and controlling of the flow of light etc.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. R. Krenn, J. C. Weeber, A. Dereux, E. Bourillot, J. P. Goudonnet, B. Schider, A. Leitner, F. R. Aussenegg, and C. Girard, "Direct observation of localized surface plasmon coupling," Phys. Rev. B 60, 5029-5033 (1999).
    [CrossRef]
  2. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mater. 2, 229-232 (2003).
    [CrossRef]
  3. B. Wang and G. P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Opt. Lett. 29, 1992-1994 (2004).
    [CrossRef] [PubMed]
  4. K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
    [CrossRef]
  5. K. Tanaka, M. Tanaka, and T. Sugiyama, "Simulations of partical nanometric optical circuits based on surface plasmon polariton gap waveguide," Opt. Express 13, 256-266 (2005).
    [CrossRef] [PubMed]
  6. B. Wang and G. P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599-3601 (2004).
    [CrossRef]
  7. B.Wang and G. P.Wang, "Directional beaming of light from a nanoslit surrounded by metallic heterostructures," Appl. Phys. Lett. (to be published).
    [PubMed]
  8. B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
    [CrossRef]
  9. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media," IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).
  10. E. D. Palik, Handbook of optical constants of solids (Academic, New York, 1985).
  11. Z. Y. Li and K. M. Ho, "Anomalous propagation loss in photonic crystal waveguides," Phys. Rev. Lett. 92, 063904 (2004).
    [CrossRef] [PubMed]
  12. N. S. Stoyanov, D.W.Ward, T. Feurer, and K. A. Nelson, "Terahertz polariton propagation in patterne materials," Nature Mater. 1, 95-98 (2002).
    [CrossRef]
  13. R. Morandotti, H. S. Eisenberg, Y. Silberberg, M. Sorel, and J. S. Aitchison, "Self-focusing and defocusing in waveguide arrays," Phys. Rev. Lett. 86, 3296-3299 (2001).
    [CrossRef] [PubMed]
  14. T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer and F Lederer, "Anomalous refraction and diffraction in discrete optical systems," Phys. Rev. Lett. 88, 093901 (2002).
    [CrossRef] [PubMed]
  15. H. A. Haus and L. Molter-Orr, "Coupled multiple waveguide systems," IEEE J. Quantum Electron. QE-19, 840-844 (1983).
    [CrossRef]

Appl. Phys. Lett. (4)

B. Wang and G. P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599-3601 (2004).
[CrossRef]

B.Wang and G. P.Wang, "Directional beaming of light from a nanoslit surrounded by metallic heterostructures," Appl. Phys. Lett. (to be published).
[PubMed]

B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. A. Haus and L. Molter-Orr, "Coupled multiple waveguide systems," IEEE J. Quantum Electron. QE-19, 840-844 (1983).
[CrossRef]

IEEE Trans. Antennas Propagat. (1)

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media," IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).

Nature Mater. (2)

N. S. Stoyanov, D.W.Ward, T. Feurer, and K. A. Nelson, "Terahertz polariton propagation in patterne materials," Nature Mater. 1, 95-98 (2002).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mater. 2, 229-232 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

J. R. Krenn, J. C. Weeber, A. Dereux, E. Bourillot, J. P. Goudonnet, B. Schider, A. Leitner, F. R. Aussenegg, and C. Girard, "Direct observation of localized surface plasmon coupling," Phys. Rev. B 60, 5029-5033 (1999).
[CrossRef]

Phys. Rev. Lett. (3)

R. Morandotti, H. S. Eisenberg, Y. Silberberg, M. Sorel, and J. S. Aitchison, "Self-focusing and defocusing in waveguide arrays," Phys. Rev. Lett. 86, 3296-3299 (2001).
[CrossRef] [PubMed]

T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer and F Lederer, "Anomalous refraction and diffraction in discrete optical systems," Phys. Rev. Lett. 88, 093901 (2002).
[CrossRef] [PubMed]

Z. Y. Li and K. M. Ho, "Anomalous propagation loss in photonic crystal waveguides," Phys. Rev. Lett. 92, 063904 (2004).
[CrossRef] [PubMed]

Other (1)

E. D. Palik, Handbook of optical constants of solids (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Scheme of the MHWG structure. w 1 and h 1 denote the width and height of Ag (with the dielectric constant of ε 1) guide and w 2 and h 2 is that of Al (ε 2) guides. (b) and (c) illustrate Ex distribution in x-z plane and y-z plane, respectively.

Fig. 2.
Fig. 2.

|E|2 profiles along (a) x direction at y=0 and (b) y direction at x=0 in x-y plane for different propagation distance. (c) Propagation loss as a function of the propagation distance.

Fig. 3.
Fig. 3.

(a) Scheme of the M-Z interferometer and (b) |E|2 distributions in y-z plane at x=0 as SPPs passing through the interferometer.

Fig. 4.
Fig. 4.

(a) Cross section of the heterowaveguide array in x-y plane. (b)-(d) |E|2 distributions of SPPs in a plane 25nm away from the output end of the structure and (e)-(g) the corresponding normalized intensity of |E|2 profiles on a line parallel to x direction. w 2= (b) 35nm, (c) 55nm, and (d) 85nm while w 1=35nm.

Fig. 5.
Fig. 5.

Ex distributions in y-z plane for w 2= (a) 35nm, (b) 55nm and (c) 85nm. F1 and F2 denote the focus loacation in the DMHWGs.

Tables (1)

Tables Icon

Table 1. Cross section and propagation loss of SPPs in the MHWGs for different w 1 and w 2.

Metrics