Abstract

The observation of discrete spatial solitons in fs laser written waveguide arrays in fused silica is reported for the first time. The fs writing process permits the specific setting of the linear and nonlinear guiding properties of the waveguides. The results in this paper reveal a new avenue for the fabrication of various nonlinear optical devices.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Davies, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a fs-laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef]
  2. S. Nolte, M. Will, J. Burgho., and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A. 77, 109-111 (2003).
    [CrossRef]
  3. T. Pertsch, U. Peschel, F. Lederer, J. Burgho., M. Will, S. Nolte, and A. Tuennermann, "Discrete di.raction in two-dimensional arrays of coupled waveguides in silica," Opt. Lett. 29, 468-470 (2004).
    [CrossRef] [PubMed]
  4. T. Pertsch, T. Zentgraf, U. Peschel, A. Braeuer, and F. Lederer, "Anomalous refraction and di.raction in discrete optical systems," Phys. Rev. Lett. 88, 0939011-4 (2002).
    [CrossRef]
  5. D. Christodoulides and R. Joseph, "Discrete self-focusing in nonlinear arrays of coupled waveguides," Opt. Lett. 13, 794-796 (1988).
    [CrossRef] [PubMed]
  6. H. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd, and J. Aitchison, "Discrete spatial optical solitons in waveguide arrays," Phys. Rev. Lett. 81, 3383-3386 (1998).
    [CrossRef]
  7. N. Efremidis, S. Sears, D. Christodoulides, J. Fleischer, and M. Segev, "Discrete Solitons in photorefractive optically induced nonlinear photonic lattices," Phys. Rev. E 66, 04660211-5 (2002).
    [CrossRef]
  8. Fleischer, M. Segev, N. Efremidis, and D. Christidoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature 422, 147-150 (2003).
    [CrossRef] [PubMed]
  9. A. Fratalocchi, G. Assanto, K. Brzdakiewicz, and M. Karpierz, "Discrete propagation and spatial solitons in nematic liquid crystals," Opt. Lett. 29, 1530-1532 (2004).
    [CrossRef] [PubMed]
  10. T. Pertsch, U. Peschel, S. Nolte, A. Tuennermann, F. Lederer, J. Kobelke, K. Schuster, and H. Bartelt, "Nonlinearity and disorder in two-dimensional fiber arrays," Phys. Rev. Lett. 39, 468-470 (2004).
  11. . Fleischer, G. Bartal, O. Cohen, T. Schwartz, O. Manela, B. Freedman, M. Segev, H. Buljan, and N. Efremidis, "Spatial photonics in nonlinear waveguide arrays," Opt. Express 13, 1780-1796 (2005) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-6-1780">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-6-1780</a>
    [CrossRef] [PubMed]
  12. E. Eugenieva, N. Efremidis, and D. Christodoulides, "Design of switching junctions for twodimensional discrete soliton networks," Opt. Lett. 26, 1978-1980 (2001).
    [CrossRef]
  13. D. Christodoulides and E. Eugenieva, "Blocking and routing discrete solitons in two-dimensional networks of nonlinear waveguide arrays," Phys. Rev. Lett. 87, 2339011-4 (2001).
    [CrossRef]
  14. I. Mansour and F. Caccavale, "An improved procedure to calculate the refractive index pro.le from the measured near-field intensity," J. Lightwave Technol. 14, 423-428 (1996).
    [CrossRef]
  15. A. Jones, "Coupling of optical fibers and scattering inn fibers," J. Opt. Soc. Am. 55, 261-271 (1965).
    [CrossRef]
  16. G. Agrawal, Nonlineaer Fiber Optics, 3rd ed. (Academic Press, 2001).
  17. A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, "Optical properties of IR femtosecond laser-modi.ed fused silica and application to waveguide fabrication," J. Opt. Soc. Am. B (to be published).

Appl. Phys. A. (1)

S. Nolte, M. Will, J. Burgho., and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A. 77, 109-111 (2003).
[CrossRef]

J. Lightwave Technol. (1)

I. Mansour and F. Caccavale, "An improved procedure to calculate the refractive index pro.le from the measured near-field intensity," J. Lightwave Technol. 14, 423-428 (1996).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, "Optical properties of IR femtosecond laser-modi.ed fused silica and application to waveguide fabrication," J. Opt. Soc. Am. B (to be published).

Nature (1)

Fleischer, M. Segev, N. Efremidis, and D. Christidoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature 422, 147-150 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. E (1)

N. Efremidis, S. Sears, D. Christodoulides, J. Fleischer, and M. Segev, "Discrete Solitons in photorefractive optically induced nonlinear photonic lattices," Phys. Rev. E 66, 04660211-5 (2002).
[CrossRef]

Phys. Rev. Lett. (4)

T. Pertsch, T. Zentgraf, U. Peschel, A. Braeuer, and F. Lederer, "Anomalous refraction and di.raction in discrete optical systems," Phys. Rev. Lett. 88, 0939011-4 (2002).
[CrossRef]

H. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd, and J. Aitchison, "Discrete spatial optical solitons in waveguide arrays," Phys. Rev. Lett. 81, 3383-3386 (1998).
[CrossRef]

T. Pertsch, U. Peschel, S. Nolte, A. Tuennermann, F. Lederer, J. Kobelke, K. Schuster, and H. Bartelt, "Nonlinearity and disorder in two-dimensional fiber arrays," Phys. Rev. Lett. 39, 468-470 (2004).

D. Christodoulides and E. Eugenieva, "Blocking and routing discrete solitons in two-dimensional networks of nonlinear waveguide arrays," Phys. Rev. Lett. 87, 2339011-4 (2001).
[CrossRef]

Writing waveguides in glass with a fs-la (1)

K. Davies, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a fs-laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef]

Other (1)

G. Agrawal, Nonlineaer Fiber Optics, 3rd ed. (Academic Press, 2001).

Supplementary Material (1)

» Media 1: AVI (1232 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scheme of the writing process in transparent bulk material using fs laser pulses.

Fig. 2.
Fig. 2.

(a) Measured mode profile at λ = 800 nm and (b) corresponding refractive index profile.

Fig. 3.
Fig. 3.

Microscope view of the waveguide array.

Fig. 4.
Fig. 4.

(1.20 MB) Movie of the measured output pattern as a function of increasing input power.

Fig. 5.
Fig. 5.

Comparison for the evolution of the output pattern of the experimental data (left) and the numerical analysis (right). The amplitude in the nth waveguide is shown as a function of the input power.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

i d dz E n = β E n + c ( E n + 1 + E n 1 ) + κ E n 2 E n = 0 ,
E n ( z ) = i n A 0 exp iβz J n ( 2 cz ) ,
c = π 2 l c = 13.5 m 1 .
κ = ω 0 n 2 ( r ) E n ( r ) 4 rdr v ( 0 E n ( r ) 2 rdr ) 2
κ = n 2 ( eff ) ω 0 E n ( r ) 4 rdr v ( 0 E n ( r ) 2 rdr ) 2 .

Metrics