Abstract

We demonstrate high resolution, three-dimensional OCT imaging with a high speed, frequency swept 1300 nm laser source. A new external cavity semiconductor laser design, optimized for application to swept source OCT, is discussed. The design of the laser enables adjustment of an internal spectral filter to change the filter bandwidth and provides a robust bulk optics design. The laser generates ~30 mW instantaneous peak power at an effective 16 kHz sweep rate with a tuning range of ~133 nm full width. In frequency domain reflectometry and OCT applications, 109 dB sensitivity and ~10 μm axial resolution in tissue can be achieved with the swept laser. The high imaging speeds enable three-dimensional OCT imaging, including zone focusing or C-mode imaging and image fusion to acquire large depth of field data sets with high resolution. In addition, three-dimensional OCT data provides coherence gated en face images similar to optical coherence microscopy (OCM) and also enables the generation of images similar to confocal microscopy by summing signals in the axial direction. High speed, three-dimensional OCT imaging can provide comprehensive data which combines the advantages of optical coherence tomography and microscopy in a single system.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. E.A. Swanson, D. Huang, M.R. Hee, J.G. Fujimoto, C.P. Lin, and C.A. Puliafito, "High-Speed Optical Coherence Domain Reflectometry," Opt. Lett. 17, 151-153 (1992).
    [CrossRef] [PubMed]
  3. W. Drexler, U. Morgner, F.X. Kartner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, and J.G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  4. A.F. Fercher, C.K. Hitzenberger, G. Kamp, and S.Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  5. G. Häusler and M.W. Lindner, ""Coherence radar" and "spectral radar"-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  6. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C.K. Hitzenberger, M. Sticker, and A.F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
    [CrossRef]
  7. M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, and J.S. Duker, "Ultrahighresolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
    [CrossRef] [PubMed]
  8. S.H. Yun, G.J. Tearney, J.F. de Boer, and B.E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004).
    [CrossRef] [PubMed]
  9. J. Zhang, W.G. Jung, J.S. Nelson, and Z.P. Chen, "Full range polarization-sensitive Fourier domain optical coherence tomography," Opt. Express 12, 6033-6039 (2004).
    [CrossRef] [PubMed]
  10. M.A. Choma, A.K. Ellerbee, C.H. Yang, T.L. Creazzo, and J.A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005).
    [CrossRef] [PubMed]
  11. B.H. Park, M.C. Pierce, B. Cense, S.H. Yun, M. Mujat, G.J. Tearney, B.E. Bouma, and J.F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 mu m," Opt. Express 13, 3931-3944 (2005).
    [CrossRef] [PubMed]
  12. F. Lexer, C.K. Hitzenberger, A.F. Fercher, and M. Kulhavy, "Wavelength-tuning interferometry of intraocular distances," Appl. Opt. 36, 6548-6553 (1997).
    [CrossRef]
  13. B. Golubovic, B.E. Bouma, G.J. Tearney, and J.G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser," Opt. Lett. 22, 1704-1706 (1997).
    [CrossRef]
  14. S.R. Chinn, E.A. Swanson, and J.G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
    [CrossRef] [PubMed]
  15. S.H. Yun, G.J. Tearney, J.F. de Boer, N. Iftimia, and B.E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
    [CrossRef] [PubMed]
  16. R. Huber, M. Wojtkowski, K. Taira, J.G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513- 3528 (2005).
    [CrossRef] [PubMed]
  17. M.A. Choma, K. Hsu, and J. Izatt, "Swept source optical coherence tomography using an all-fiber 1300- nm ring laser source," J. Biomed. Opt. 10, #044009 (2005).
    [CrossRef] [PubMed]
  18. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, and B.E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067- 2069 (2003).
    [CrossRef] [PubMed]
  19. R. Leitgeb, C.K. Hitzenberger, and A.F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  20. M.A. Choma, M.V. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
    [CrossRef] [PubMed]
  21. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A.F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  22. N.A. Nassif, B. Cense, B.H. Park, M.C. Pierce, S.H. Yun, B.E. Bouma, G.J. Tearney, T.C. Chen, and J.F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
    [CrossRef] [PubMed]
  23. M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, "Ophthalmic imaging by spectral optical coherence tomography," Am. J. Ophtalm. 138, 412- 419 (2004).
    [CrossRef]
  24. R.A. Leitgeb, L. Schmetterer, C.K. Hitzenberger, A.F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-173 (2004).
    [CrossRef] [PubMed]
  25. M.V. Sarunic, M.A. Choma, C.H. Yang, and J.A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13, 957-967 (2005).
    [CrossRef] [PubMed]
  26. S.H. Yun, C. Boudoux, G.J. Tearney, and B.E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
    [CrossRef] [PubMed]
  27. W.Y. Oh, S.H. Yun, G.J. Tearney, and B.E. Bouma, "Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers," IEEE Photonics Technol. Lett. 17, 678-680 (2005).
    [CrossRef] [PubMed]
  28. S.T. Sanders, J.A. Baldwin, T.P. Jenkins, D.S. Baer, and R.K. Hanson, "Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines," P. Combust. Inst. 28, 587-594 (2000).
    [CrossRef]
  29. S.T. Sanders, J. Wang, J.B. Jeffries, and R.K. Hanson, "Diode-laser absorption sensor for line-of-sight gas temperature distributions," Appl. Opt. 40, 4404-4415 (2001).
    [CrossRef]
  30. J. Wang, S.T. Sanders, J.B. Jeffries, and R.K. Hanson, "Oxygen measurements at high pressures with vertical cavity surface-emitting lasers," Appl. Phys. B 72, 865-872 (2001).
    [CrossRef]
  31. G. Totschnig, M. Lackner, R. Shau, M. Ortsiefer, J. Rosskopf, M.C. Amann, and F. Winter, "1.8 mu m vertical-cavity surface-emitting laser absorption measurements of HCl, H2O and CH4," Meas. Sci. Technol. 14, 472-478 (2003).
    [CrossRef]
  32. A.A. Bol'shakov, B.A. Cruden, and S.P. Sharma, "Determination of gas temperature and thermometric species in inductively coupled plasmas by emission and diode laser absorption," Plasma Sci. Technol. 13, 691-700 (2004).
    [CrossRef]
  33. L.A. Kranendonk, R.J. Bartula, and S.T. Sanders, "Modeless operation of a wavelength-agile laser by high-speed cavity length changes," Opt. Express 13, 1498-1507 (2005).
    [CrossRef] [PubMed]
  34. W. Eickhoff and R. Ulrich, "Optical Frequency-Domain Reflectometry in Single-Mode Fiber," Appl. Phys. Lett. 39, 693-695 (1981).
    [CrossRef]
  35. R. Passy, N. Gisin, J.P. Vonderweid, and H.H. Gilgen, "Experimental and Theoretical Investigations of Coherent Ofdr with Semiconductor-Laser Sources," J. Lightwave Technol. 12, 1622-1630 (1994).
    [CrossRef]
  36. U. Glombitza and E. Brinkmeyer, "Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Wave-Guides," J. Lightwave Technol. 11, 1377-1384 (1993).
    [CrossRef]
  37. H. Barfuss and E. Brinkmeyer, "Modified Optical Frequency-Domain Reflectometry with High Spatial- Resolution for Components of Integrated Optic Systems," J. Lightwave Technol. 7, 3-10 (1989).
    [CrossRef]
  38. F. Lexer, C.K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A.F. Fercher, "Dynamic coherent focus OCT with depth-independent transversal resolution," J. Mod. Opt. 46, 541-553 (1999).
  39. A. Divetia, T.H. Hsieh, J. Zhang, Z.P. Chen, M. Bachman, and G.P. Li, "Dynamically focused optical coherence tomography for endoscopic applications," Appl. Phys. Lett. 86, #103902 (2005).
    [CrossRef]
  40. M.J. Cobb, X.M. Liu, and X.D. Li, "Continuous focus tracking for real-time optical coherence tomography," Opt. Lett. 30, 1680-1682 (2005).
    [CrossRef] [PubMed]
  41. B. Qi, A.P. Himmer, L.M. Gordon, X.D.V. Yang, L.D. Dickensheets, and I.A. Vitkin, "Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror," Opt. Commun. 232, 123-128 (2004).
    [CrossRef]
  42. Y.M. Wang, Y.H. Zhao, J.S. Nelson, Z.P. Chen, and R.S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett. 28, 182-184 (2003).
    [CrossRef] [PubMed]
  43. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, "Imaging ex vivo healthy and pathological human brain tissue with ultrahigh- resolution optical coherence tomography," J. Biomed. Opt. 10, (2005).
    [CrossRef] [PubMed]
  44. Y.T. Pan, Z.G. Li, T.Q. Xie, and C.R. Chu, "Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage," J. Biomed. Opt. 8, 648-654 (2003).
    [CrossRef] [PubMed]
  45. Y. Zhang, J.T. Rha, R.S. Jonnal, and D.T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
    [CrossRef] [PubMed]
  46. J.A. Izatt, M.R. Hee, G.M. Owen, E.A. Swanson, and J.G. Fujimoto, "Optical Coherence Microscopy in Scattering Media," Opt. Lett. 19, 590-592 (1994).
    [CrossRef] [PubMed]
  47. J.A. Izatt, M.D. Kulkarni, H.W. Wang, K. Kobayashi, and M.V. Sivak, "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Top. Quantum Electron. 2, 1017-1028 (1996).
    [CrossRef]
  48. A.D. Aguirre, P. Hsiung, T.H. Ko, I. Hartl, and J.G. Fujimoto, "High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging," Opt. Lett. 28, 2064-2066 (2003).
    [CrossRef] [PubMed]
  49. S.L. Jiao, R. Knighton, X.R. Huang, G. Gregori, and C.A. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005).
    [CrossRef] [PubMed]
  50. M. Wojtkowski, V. Srinivasan, J.G. Fujimoto, T. Ko, J.S. Schuman, A. Kowalczyk, and J.S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
    [CrossRef] [PubMed]
  51. P.I. Richter and T.W. Hänsch, "Diode-Lasers in External Cavities with Frequency-Shifted Feedback," Opt. Commun. 85, 414-418 (1991).
    [CrossRef]
  52. J.J. Snyder, "Paraxial Ray Analysis of a Cats-Eye Retroreflector," Appl. Opt. 14, 1825-1828 (1975).
    [CrossRef] [PubMed]
  53. S.H. Yun, G.J. Tearney, B.E. Bouma, B.H. Park, and J.F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength," Opt. Express 11, 3598-3604 (2003).
    [CrossRef] [PubMed]

Am. J. Ophtalm. (1)

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, "Ophthalmic imaging by spectral optical coherence tomography," Am. J. Ophtalm. 138, 412- 419 (2004).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

J. Wang, S.T. Sanders, J.B. Jeffries, and R.K. Hanson, "Oxygen measurements at high pressures with vertical cavity surface-emitting lasers," Appl. Phys. B 72, 865-872 (2001).
[CrossRef]

Appl. Phys. Lett. (2)

W. Eickhoff and R. Ulrich, "Optical Frequency-Domain Reflectometry in Single-Mode Fiber," Appl. Phys. Lett. 39, 693-695 (1981).
[CrossRef]

A. Divetia, T.H. Hsieh, J. Zhang, Z.P. Chen, M. Bachman, and G.P. Li, "Dynamically focused optical coherence tomography for endoscopic applications," Appl. Phys. Lett. 86, #103902 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J.A. Izatt, M.D. Kulkarni, H.W. Wang, K. Kobayashi, and M.V. Sivak, "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Top. Quantum Electron. 2, 1017-1028 (1996).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

W.Y. Oh, S.H. Yun, G.J. Tearney, and B.E. Bouma, "Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers," IEEE Photonics Technol. Lett. 17, 678-680 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (5)

G. Häusler and M.W. Lindner, ""Coherence radar" and "spectral radar"-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

M.A. Choma, K. Hsu, and J. Izatt, "Swept source optical coherence tomography using an all-fiber 1300- nm ring laser source," J. Biomed. Opt. 10, #044009 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A.F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, "Imaging ex vivo healthy and pathological human brain tissue with ultrahigh- resolution optical coherence tomography," J. Biomed. Opt. 10, (2005).
[CrossRef] [PubMed]

Y.T. Pan, Z.G. Li, T.Q. Xie, and C.R. Chu, "Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage," J. Biomed. Opt. 8, 648-654 (2003).
[CrossRef] [PubMed]

J. Lightwave Technol. (3)

R. Passy, N. Gisin, J.P. Vonderweid, and H.H. Gilgen, "Experimental and Theoretical Investigations of Coherent Ofdr with Semiconductor-Laser Sources," J. Lightwave Technol. 12, 1622-1630 (1994).
[CrossRef]

U. Glombitza and E. Brinkmeyer, "Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Wave-Guides," J. Lightwave Technol. 11, 1377-1384 (1993).
[CrossRef]

H. Barfuss and E. Brinkmeyer, "Modified Optical Frequency-Domain Reflectometry with High Spatial- Resolution for Components of Integrated Optic Systems," J. Lightwave Technol. 7, 3-10 (1989).
[CrossRef]

J. Mod. Opt. (1)

F. Lexer, C.K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A.F. Fercher, "Dynamic coherent focus OCT with depth-independent transversal resolution," J. Mod. Opt. 46, 541-553 (1999).

Meas. Sci. Technol. (1)

G. Totschnig, M. Lackner, R. Shau, M. Ortsiefer, J. Rosskopf, M.C. Amann, and F. Winter, "1.8 mu m vertical-cavity surface-emitting laser absorption measurements of HCl, H2O and CH4," Meas. Sci. Technol. 14, 472-478 (2003).
[CrossRef]

Ophthalmology (1)

M. Wojtkowski, V. Srinivasan, J.G. Fujimoto, T. Ko, J.S. Schuman, A. Kowalczyk, and J.S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Opt. Commun. (3)

P.I. Richter and T.W. Hänsch, "Diode-Lasers in External Cavities with Frequency-Shifted Feedback," Opt. Commun. 85, 414-418 (1991).
[CrossRef]

B. Qi, A.P. Himmer, L.M. Gordon, X.D.V. Yang, L.D. Dickensheets, and I.A. Vitkin, "Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror," Opt. Commun. 232, 123-128 (2004).
[CrossRef]

A.F. Fercher, C.K. Hitzenberger, G. Kamp, and S.Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express (14)

B.H. Park, M.C. Pierce, B. Cense, S.H. Yun, M. Mujat, G.J. Tearney, B.E. Bouma, and J.F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 mu m," Opt. Express 13, 3931-3944 (2005).
[CrossRef] [PubMed]

Y. Zhang, J.T. Rha, R.S. Jonnal, and D.T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
[CrossRef] [PubMed]

N.A. Nassif, B. Cense, B.H. Park, M.C. Pierce, S.H. Yun, B.E. Bouma, G.J. Tearney, T.C. Chen, and J.F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef] [PubMed]

M.A. Choma, M.V. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, and J.S. Duker, "Ultrahighresolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

S.H. Yun, G.J. Tearney, J.F. de Boer, and B.E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004).
[CrossRef] [PubMed]

J. Zhang, W.G. Jung, J.S. Nelson, and Z.P. Chen, "Full range polarization-sensitive Fourier domain optical coherence tomography," Opt. Express 12, 6033-6039 (2004).
[CrossRef] [PubMed]

S.L. Jiao, R. Knighton, X.R. Huang, G. Gregori, and C.A. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005).
[CrossRef] [PubMed]

M.V. Sarunic, M.A. Choma, C.H. Yang, and J.A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13, 957-967 (2005).
[CrossRef] [PubMed]

L.A. Kranendonk, R.J. Bartula, and S.T. Sanders, "Modeless operation of a wavelength-agile laser by high-speed cavity length changes," Opt. Express 13, 1498-1507 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J.G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513- 3528 (2005).
[CrossRef] [PubMed]

S.H. Yun, G.J. Tearney, J.F. de Boer, N. Iftimia, and B.E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

S.H. Yun, G.J. Tearney, B.E. Bouma, B.H. Park, and J.F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength," Opt. Express 11, 3598-3604 (2003).
[CrossRef] [PubMed]

R. Leitgeb, C.K. Hitzenberger, and A.F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

Opt. Lett. (13)

S.H. Yun, C. Boudoux, G.J. Tearney, and B.E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
[CrossRef] [PubMed]

A.D. Aguirre, P. Hsiung, T.H. Ko, I. Hartl, and J.G. Fujimoto, "High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging," Opt. Lett. 28, 2064-2066 (2003).
[CrossRef] [PubMed]

J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, and B.E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067- 2069 (2003).
[CrossRef] [PubMed]

R.A. Leitgeb, L. Schmetterer, C.K. Hitzenberger, A.F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-173 (2004).
[CrossRef] [PubMed]

Y.M. Wang, Y.H. Zhao, J.S. Nelson, Z.P. Chen, and R.S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett. 28, 182-184 (2003).
[CrossRef] [PubMed]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C.K. Hitzenberger, M. Sticker, and A.F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
[CrossRef]

E.A. Swanson, D. Huang, M.R. Hee, J.G. Fujimoto, C.P. Lin, and C.A. Puliafito, "High-Speed Optical Coherence Domain Reflectometry," Opt. Lett. 17, 151-153 (1992).
[CrossRef] [PubMed]

J.A. Izatt, M.R. Hee, G.M. Owen, E.A. Swanson, and J.G. Fujimoto, "Optical Coherence Microscopy in Scattering Media," Opt. Lett. 19, 590-592 (1994).
[CrossRef] [PubMed]

S.R. Chinn, E.A. Swanson, and J.G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
[CrossRef] [PubMed]

B. Golubovic, B.E. Bouma, G.J. Tearney, and J.G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser," Opt. Lett. 22, 1704-1706 (1997).
[CrossRef]

W. Drexler, U. Morgner, F.X. Kartner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, and J.G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

M.A. Choma, A.K. Ellerbee, C.H. Yang, T.L. Creazzo, and J.A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005).
[CrossRef] [PubMed]

M.J. Cobb, X.M. Liu, and X.D. Li, "Continuous focus tracking for real-time optical coherence tomography," Opt. Lett. 30, 1680-1682 (2005).
[CrossRef] [PubMed]

P. Combust. Inst. (1)

S.T. Sanders, J.A. Baldwin, T.P. Jenkins, D.S. Baer, and R.K. Hanson, "Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines," P. Combust. Inst. 28, 587-594 (2000).
[CrossRef]

Plasma Sci. Technol. (1)

A.A. Bol'shakov, B.A. Cruden, and S.P. Sharma, "Determination of gas temperature and thermometric species in inductively coupled plasmas by emission and diode laser absorption," Plasma Sci. Technol. 13, 691-700 (2004).
[CrossRef]

Science (1)

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Supplementary Material (3)

» Media 1: AVI (5877 KB)     
» Media 2: MOV (2453 KB)     
» Media 3: MOV (1682 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic diagram of the high speed, frequency swept laser system. The resonant scanner and grating assembly sweep the various wavelengths across the reflective slit, thereby tuning the laser while maintaining a constant cavity length.

Fig. 2.
Fig. 2.

Amplified spontaneous emission (ASE) spectrum of the cavity at an injection current below the laser threshold, showing the approximate filter function provided by the grating, slit and end mirror.

Fig. 3.
Fig. 3.

Output power vs. injection current of the laser. The laser threshold is 63 mA at a diode temperature of 22 °C.

Fig. 4.
Fig. 4.

Dual balanced Mach-Zehnder interferometer for the generation of a clock signal.

Fig. 5.
Fig. 5.

Schematic of the swept source OCT system using C-mode scanning (optics: blue; electronics: green).

Fig. 6.
Fig. 6.

Left: Transient intensity profile of the sweep for a forward and a backward scan. Right: Integrated spectrum of swept laser source.

Fig. 7.
Fig. 7.

Left: Point spread function (PSF) in OCT application for a forward scan - resolution in air 16 μm (FWHM of amplitude) corresponding to 12 μm in tissue. Right: PSF for a backward scan - resolution in air 12 μm (FWHM of amplitude) corresponding to 9 μm in tissue.

Fig. 8.
Fig. 8.

Measured PSFs in OCT application on a logarithmic scale for different delays relative to the reference arm length. The scale is adjusted by a constant such that the peak values reflect the sensitivity values at the different depth positions. Left: PSFs for backward scans. Right: PSFs for forward scans.

Fig. 9.
Fig. 9.

Images of a human finger in vivo (3 mm × 1.5 mm) using forward sweeps only (left) and backward sweeps only (right).

Fig. 10.
Fig. 10.

(2MB movie)Application of high speed, swept source OCT for OCM imaging of African frog (Xenopus laevis) tadpole. Images show the gill region: a. Standard microscope image of the tadpole, the region imaged by OCT is marked as a white square; b. Movie showing consecutive en face images reconstructed from a three-dimensional OCT data set (6MB version); c. OCT “confocal” image obtained by integrating en face cross-sectional OCT images in the axial direction. The en face images b and c show a 1 mm × 1 mm field of view.

Fig. 11.
Fig. 11.

C-mode, swept source OCT in vivo imaging of an African frog tadpole (Xenopus laevis) a–d. OCT images recorded with different focal depths; e. OCT “confocal” image obtained by summing of all en face sections in the axial dimension, white line indicates the position of the cross-sectional image that is displayed; f. Cross-sectional OCT image with extended depth of field obtained by fusing images a–d; H-heart and G-gills in the developing tadpole.

Fig. 12.
Fig. 12.

African frog tadpole (Xenopus laevis) in vivo. Small region near the spine. a–d. OCT images with different depths of focus; e. Fused image showing cellular structure.

Fig. 13.
Fig. 13.

(1MB movie) Three-dimensional, volumetric in vivo imaging of an African frog tadpole (Xenopus laevis) using swept source OCT. Left: Four integrated en face OCT projections reconstructed from the three-dimensional OCT data sets measured for four different depths of the focal plane. Right: Movie demonstrating volume rendering of the entire tadpole.

Metrics