Abstract

A novel full parallax and viewing-angle enhanced computer-generated holographic (CGH) three-dimensional (3D) display system is proposed and implemented by combining an integral lens array and colorized synthetic phase holograms displayed on a phase-type spatial light modulator. For analyzing the viewing-angle limitations of our CGH 3D display system, we provide some theoretical background and introduce a simple ray-tracing method for 3D image reconstruction. From our method we can get continuously varying full parallax 3D images with the viewing angle about ±6°. To design the colorized phase holograms, we used a modified iterative Fourier transform algorithm and we could obtain a high diffraction efficiency (~92.5%) and a large signal-to-noise ratio (~11dB) from our simulation results. Finally we show some experimental results that verify our concept and demonstrate the full parallax viewing-angle enhanced color CGH display system.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W. Min, and B. Lee, "Viewing-angle-enhanced integral imaging system using a curved lens array," Opt. Express 12, 421-429 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-421">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-421</a>.
    [CrossRef] [PubMed]
  2. J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, "Depth-enhanced three-dimensional- two-dimensional convertible display based on modified integral imaging," Opt. Lett. 29, 2734- 2736 (2004).
    [CrossRef] [PubMed]
  3. P. S. Hilaire, S. A. Benton, and M. Lucente, "Synthetic aperture holography: a novel approach to three dimensional displays," J. Opt. Soc. Am. A 9, 1969-1977 (1992).
    [CrossRef]
  4. M. Lucente and T. A. Galyean, "Rendering interactive holographic images," in Computer Graphics and Interactive Techniques, S. G. Mair, eds., Proc. SIGGRAPH 95, 387-394 (1995).
  5. J. H. Kulick, G. P. Nordin, A. Parker, S. T. Kowel, R. G. Lindquist, M. Jones, and P. Nasiatka, "Partial pixels: a three-dimensional diffractive display architecture," J. Opt. Soc. Am. A 12, 73-83 (1995).
    [CrossRef]
  6. J. Yan, S. T. Kowel, H, J. Cho, and C. H. Ahn, "Real-time full-color three-dimensional display with a micromirror array," Opt. Lett. 26, 1075-1077 (2001).
    [CrossRef]
  7. G. Lippmann, "La photographie integrale," C. R. Acad. Sci.146, 446-451 (1908).
  8. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, "Real-time pickup method for a three-dimensional image based on integral photography," Appl. Opt. 36, 1598-1603 (1997).
    [CrossRef] [PubMed]
  9. B. Lee, S. Jung, S.-W. Min, and J.-H. Park, "Three-dimensional display using integral photography with dynamically variable image planes," Opt. Lett. 26, 1481-1482 (2001)
    [CrossRef]
  10. J.-H. Park, S.-W. Min, S. Jung, and B. Lee, "Analysis of viewing parameters for two display methods based on integral photography," Appl. Opt. 40, 5217-5232 (2001).
    [CrossRef]
  11. S.-H. Shin and B. Javidi, "Viewing-angle enhancement of speckle-reduced volume holographic three-dimensional display by use of integral imaging," Appl. Opt. 41, 5562-5567 (2002).
    [CrossRef] [PubMed]
  12. Y. Jeong, S. Jung, J.-H. Park, and B. Lee, "Reflection-type integral imaging scheme for displaying three-dimensional images," Opt. Lett. 27, 704-706 (2002).
    [CrossRef]
  13. B. Lee, S. Jung, and J.-H. Park, "Viewing-angle-enhanced integral imaging by lens switching," Opt. Lett. 27, 818-820 (2002).
    [CrossRef]
  14. H. Choi, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, "Wide-viewing-angle 3D/2D convertible display system using two display devices and a lens array," Opt. Express 13, pp. 8424-8432 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-21-8424">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-21-8424</a>.
    [CrossRef] [PubMed]
  15. S.-W. Min, S. Jung, J.-H. Park, and B. Lee, "Study for wide viewing integral photography using an aspheric Fresnel-lens array," Opt. Eng. 41, 2572-2576 (2002).
    [CrossRef]
  16. H. Choi, S. Min, S. Jung, J. Park, and B. Lee, "Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays," Opt. Express 11, 927-932 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-927">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-927</a>.
    [CrossRef] [PubMed]
  17. J. S. Jang and B. Javidi, "Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics," Opt. Lett. 27, 324-326 (2002).
    [CrossRef]
  18. J. S. Jang and B. Javidi, "Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor," Appl. Opt. 42, pp. 1996-2002 (2003).
    [CrossRef] [PubMed]
  19. J. S. Jang and B. Javidi, "Three dimensional synthetic aperture integral imaging," Opt. Lett. 27, 1144-1146 (2002).
    [CrossRef]
  20. A. Stern and B. Javidi, "Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging," Appl. Opt. 42, 7036-7042 (2003).
    [CrossRef] [PubMed]
  21. M. M. Corral, B. Javidi, R. M. Cuenca, and G. Saavedra, "Multifacet structure of observed reconstructed integral images," JOSA A 22, 597-603 (2005).
    [CrossRef]
  22. H. Arimoto and B. Javidi, "Integral three-dimensional imaging with digital reconstruction," Opt. Lett. 26, 157-159 (2001).
    [CrossRef]
  23. S. Hong and B. Javidi, "Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing," Opt. Express 12, 4579-4588 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4579">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4579</a>.
    [CrossRef] [PubMed]
  24. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, "Gradient-index lens-array method based on real-time integral photography for three-dimensional images," App. Opt. 37, 2034-2045 (1998).
    [CrossRef]
  25. F. Okano, J. Arai, H. Hoshino, and I. Yuyama, "Three-dimensional video system based on integral photography," Opt. Eng. 38, 1072-1077 (1999).
    [CrossRef]
  26. G. Tricoles, "Computer generated holograms: an historical review," Appl. Opt. 26, 4351-4360 (1987).
    [CrossRef] [PubMed]
  27. O. Bryngdahl, "Computer-generated holograms as generalized optical components," Opt. Eng. 14, 426-435 (1975).
  28. H. Dammann, "Synthetic digital-phase gratings - design, features, applications," in Computer-Generated Holography, S. H. Lee, eds., Proc. SPIE 437, 72-78 (1983).
  29. A. W. Lohmann and D. P. Paris, "Computer generated spatial filters for coherent optical data processing," Appl. Opt. 7, 651-655 (1968).
    [CrossRef] [PubMed]
  30. T. Okoshi, Three-dimensional Imaging Techniques (Academic Press, New York, 1976)
  31. N. Mukohzaka, N. Yoshida, H. Toyoda, Y. Kobayashi, and T. Hara, "Diffraction efficiency analysis of a parallel-aligned nematic-liquid-crystal spatial light modulator," Appl. Opt. 33, 2804-2811 (1994).
    [CrossRef] [PubMed]
  32. U. Efraon, S. T. Wu, and T. D. Bates, "Nematic liquid crystals for spatial light modulators: recent studies," J. Opt. Soc. Am. B 3, 247-252 (1986).
    [CrossRef]
  33. S. Fukushima, T. Kurokawa, and M. Ohno, "Real-time hologram construction and reconstruction using a high-resolution spatial light modulator," Appl. Phys. Lett. 58, 787-789 (1991).
    [CrossRef]
  34. L. Ge, M. Duelli, and R. W. Cohn, "Enumeration of illumination and scanning modes from real-time spatial light modulators," Opt. Express 7, 403-416 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-12-403">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-12-403</a>.
    [CrossRef] [PubMed]
  35. T.-C. Poon, B. W. Schilling, M. H. Wu, K. Shinoda and Y. Suzuki, "Real-time two-dimensional holographic imaging by using an electron-beam-addressed spatial light modulator," Opt. Lett. 18, 63-65 (1993).
    [CrossRef] [PubMed]
  36. P. S. Hilaire, S. A. Benton, M. Jucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, "Electronic display system for computational holography," in Practical Holography IV, S. A. Benton, eds., Proc. SPIE 1212, 174-182 (1991).
    [CrossRef]
  37. T. Ito and K. Okano, "Color electro-holography by three colored reference lights simultaneously incident upon one hologram panel," Opt. Express 12, 4320-4325 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4320">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4320</a>.
    [CrossRef] [PubMed]
  38. K. Choi, H. Kim, and B. Lee, "Synthetic phase holograms for autostereoscopic image displays using a modified IFTA," Opt. Express 12, 2454-2462 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2454">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2454</a>.
    [CrossRef] [PubMed]
  39. K. Choi, H. Kim, and B. Lee, "Full-color autostereoscopic 3D display system using color-dispersion-compensated synthetic phase holograms," Opt. Express 12, 5229-5236 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5229">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5229</a>.
    [CrossRef] [PubMed]
  40. J. W. Goodman, Introduction to Fourier Optics, 3rd ed., (Roberts & Company, Englewood, Colorado, 2005).
  41. R. W. Gerchberg and W. O. Saxton, "A practical algorithm of the determination of the phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).
  42. F. Wyrowsiki, "Diffractive optical elements: iterative calculation of quantized, blazed phase structures," J. Opt. Soc. Am. 7, 961-969 (1990).
    [CrossRef]
  43. J. R. Fienup, "Phase retrieval algorithms: a comparison," Appl. Opt. 21, 2758-2769 (1982).
    [CrossRef] [PubMed]
  44. V. A. Soifer, V. V. Kotlyar, and L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis Ltd, 1997).
  45. H. Kim, B. Yang, and B. Lee, "Iterative Fourier transform algorithm with regularization for the optimal design of diffractive optical elements," J. Opt. Soc. Am. A 21, 2353-2365 (2004).
    [CrossRef]
  46. T. Iwaii and T. Asakura, "Speckle reduction in coherent information processing," Proc. IEEE 84, 765-781 (1996).
    [CrossRef]

14 (1)

O. Bryngdahl, "Computer-generated holograms as generalized optical components," Opt. Eng. 14, 426-435 (1975).

App. Opt. (1)

J. Arai, F. Okano, H. Hoshino, and I. Yuyama, "Gradient-index lens-array method based on real-time integral photography for three-dimensional images," App. Opt. 37, 2034-2045 (1998).
[CrossRef]

Appl. Opt. (9)

G. Tricoles, "Computer generated holograms: an historical review," Appl. Opt. 26, 4351-4360 (1987).
[CrossRef] [PubMed]

J. S. Jang and B. Javidi, "Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor," Appl. Opt. 42, pp. 1996-2002 (2003).
[CrossRef] [PubMed]

A. Stern and B. Javidi, "Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging," Appl. Opt. 42, 7036-7042 (2003).
[CrossRef] [PubMed]

A. W. Lohmann and D. P. Paris, "Computer generated spatial filters for coherent optical data processing," Appl. Opt. 7, 651-655 (1968).
[CrossRef] [PubMed]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, "Real-time pickup method for a three-dimensional image based on integral photography," Appl. Opt. 36, 1598-1603 (1997).
[CrossRef] [PubMed]

J.-H. Park, S.-W. Min, S. Jung, and B. Lee, "Analysis of viewing parameters for two display methods based on integral photography," Appl. Opt. 40, 5217-5232 (2001).
[CrossRef]

S.-H. Shin and B. Javidi, "Viewing-angle enhancement of speckle-reduced volume holographic three-dimensional display by use of integral imaging," Appl. Opt. 41, 5562-5567 (2002).
[CrossRef] [PubMed]

N. Mukohzaka, N. Yoshida, H. Toyoda, Y. Kobayashi, and T. Hara, "Diffraction efficiency analysis of a parallel-aligned nematic-liquid-crystal spatial light modulator," Appl. Opt. 33, 2804-2811 (1994).
[CrossRef] [PubMed]

J. R. Fienup, "Phase retrieval algorithms: a comparison," Appl. Opt. 21, 2758-2769 (1982).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. Fukushima, T. Kurokawa, and M. Ohno, "Real-time hologram construction and reconstruction using a high-resolution spatial light modulator," Appl. Phys. Lett. 58, 787-789 (1991).
[CrossRef]

C. R. Acad. Sci. (1)

G. Lippmann, "La photographie integrale," C. R. Acad. Sci.146, 446-451 (1908).

J. Opt. Soc. Am. (1)

F. Wyrowsiki, "Diffractive optical elements: iterative calculation of quantized, blazed phase structures," J. Opt. Soc. Am. 7, 961-969 (1990).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (1)

JOSA A (1)

M. M. Corral, B. Javidi, R. M. Cuenca, and G. Saavedra, "Multifacet structure of observed reconstructed integral images," JOSA A 22, 597-603 (2005).
[CrossRef]

Opt. Eng. (2)

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, "Three-dimensional video system based on integral photography," Opt. Eng. 38, 1072-1077 (1999).
[CrossRef]

S.-W. Min, S. Jung, J.-H. Park, and B. Lee, "Study for wide viewing integral photography using an aspheric Fresnel-lens array," Opt. Eng. 41, 2572-2576 (2002).
[CrossRef]

Opt. Express (8)

H. Choi, S. Min, S. Jung, J. Park, and B. Lee, "Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays," Opt. Express 11, 927-932 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-927">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-927</a>.
[CrossRef] [PubMed]

H. Choi, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, "Wide-viewing-angle 3D/2D convertible display system using two display devices and a lens array," Opt. Express 13, pp. 8424-8432 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-21-8424">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-21-8424</a>.
[CrossRef] [PubMed]

Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W. Min, and B. Lee, "Viewing-angle-enhanced integral imaging system using a curved lens array," Opt. Express 12, 421-429 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-421">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-421</a>.
[CrossRef] [PubMed]

S. Hong and B. Javidi, "Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing," Opt. Express 12, 4579-4588 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4579">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4579</a>.
[CrossRef] [PubMed]

L. Ge, M. Duelli, and R. W. Cohn, "Enumeration of illumination and scanning modes from real-time spatial light modulators," Opt. Express 7, 403-416 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-12-403">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-12-403</a>.
[CrossRef] [PubMed]

T. Ito and K. Okano, "Color electro-holography by three colored reference lights simultaneously incident upon one hologram panel," Opt. Express 12, 4320-4325 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4320">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4320</a>.
[CrossRef] [PubMed]

K. Choi, H. Kim, and B. Lee, "Synthetic phase holograms for autostereoscopic image displays using a modified IFTA," Opt. Express 12, 2454-2462 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2454">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2454</a>.
[CrossRef] [PubMed]

K. Choi, H. Kim, and B. Lee, "Full-color autostereoscopic 3D display system using color-dispersion-compensated synthetic phase holograms," Opt. Express 12, 5229-5236 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5229">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5229</a>.
[CrossRef] [PubMed]

Opt. Lett. (9)

T.-C. Poon, B. W. Schilling, M. H. Wu, K. Shinoda and Y. Suzuki, "Real-time two-dimensional holographic imaging by using an electron-beam-addressed spatial light modulator," Opt. Lett. 18, 63-65 (1993).
[CrossRef] [PubMed]

H. Arimoto and B. Javidi, "Integral three-dimensional imaging with digital reconstruction," Opt. Lett. 26, 157-159 (2001).
[CrossRef]

J. S. Jang and B. Javidi, "Three dimensional synthetic aperture integral imaging," Opt. Lett. 27, 1144-1146 (2002).
[CrossRef]

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, "Depth-enhanced three-dimensional- two-dimensional convertible display based on modified integral imaging," Opt. Lett. 29, 2734- 2736 (2004).
[CrossRef] [PubMed]

J. Yan, S. T. Kowel, H, J. Cho, and C. H. Ahn, "Real-time full-color three-dimensional display with a micromirror array," Opt. Lett. 26, 1075-1077 (2001).
[CrossRef]

B. Lee, S. Jung, S.-W. Min, and J.-H. Park, "Three-dimensional display using integral photography with dynamically variable image planes," Opt. Lett. 26, 1481-1482 (2001)
[CrossRef]

J. S. Jang and B. Javidi, "Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics," Opt. Lett. 27, 324-326 (2002).
[CrossRef]

Y. Jeong, S. Jung, J.-H. Park, and B. Lee, "Reflection-type integral imaging scheme for displaying three-dimensional images," Opt. Lett. 27, 704-706 (2002).
[CrossRef]

B. Lee, S. Jung, and J.-H. Park, "Viewing-angle-enhanced integral imaging by lens switching," Opt. Lett. 27, 818-820 (2002).
[CrossRef]

Optik (1)

R. W. Gerchberg and W. O. Saxton, "A practical algorithm of the determination of the phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

Proc. IEEE (1)

T. Iwaii and T. Asakura, "Speckle reduction in coherent information processing," Proc. IEEE 84, 765-781 (1996).
[CrossRef]

Proc. SIGGRAPH 1995 (1)

M. Lucente and T. A. Galyean, "Rendering interactive holographic images," in Computer Graphics and Interactive Techniques, S. G. Mair, eds., Proc. SIGGRAPH 95, 387-394 (1995).

Proc. SPIE (2)

P. S. Hilaire, S. A. Benton, M. Jucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, "Electronic display system for computational holography," in Practical Holography IV, S. A. Benton, eds., Proc. SPIE 1212, 174-182 (1991).
[CrossRef]

H. Dammann, "Synthetic digital-phase gratings - design, features, applications," in Computer-Generated Holography, S. H. Lee, eds., Proc. SPIE 437, 72-78 (1983).

Other (3)

T. Okoshi, Three-dimensional Imaging Techniques (Academic Press, New York, 1976)

V. A. Soifer, V. V. Kotlyar, and L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis Ltd, 1997).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed., (Roberts & Company, Englewood, Colorado, 2005).

Supplementary Material (5)

» Media 1: AVI (1194 KB)     
» Media 2: AVI (2814 KB)     
» Media 3: AVI (1552 KB)     
» Media 4: AVI (2020 KB)     
» Media 5: AVI (2452 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of our proposed full parallax viewing-angle enhanced CGH 3D display system.

Fig. 2.
Fig. 2.

Original input images (a) and (b), (c) computer-generated elemental image with the central depth plane of 100mm and the position difference of 6mm and depth difference of 20mm between two characters, each designed CDC-SPH for red (d) and green (e) images, and (f) the reconstructed elemental image from the synthetic phase holograms (simulation).

Fig. 3.
Fig. 3.

Experimental setup and results of the proposed full parallax viewing-angle-enhanced colorized CGH display system with integral imaging lens array: (a) schematic diagram and picture of our experimental setup, (b) acquired 3D images at different viewing angles -6°, 0°, and 6°, and reconstructed 3D image of the proposed CGH system with respect to the viewing-angle variations (c) simulated result [movie] (d) experimental result [movie]. [Media 1] [Media 2]

Fig. 4.
Fig. 4.

Real-time reconstruction of the proposed full parallax viewing-angle enhanced CGH 3D system of rotating 3D characters: (a) elemental image frames [movie], (b) simulated result [movie], and (c) experimental result [movie].

Tables (1)

Tables Icon

Table 1. Performance characteristics of our designed CDC-SPHs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ = sin 1 ( λ 2 N 4 hw ) 1 2 ,
F ̂ x y = 1 jλz exp ( j 2 πz λ ) W ξ η H x ξ y η dξdη ,
g = bf b f , θ = 2 tan 1 ( ρ 2 g ) ,

Metrics