Abstract

We experimentally demonstrate, for the first time to our knowledge, a phase-sensitive amplifier based on frequency nondegenerate parametric amplification in optical fiber, where the input signal-idler pair is prepared all-optically. Using two fiber-optic parametric amplifier sections separated by a fiber-based wavelength-dependent phase shifter, we observe and investigate phase-sensitive gain profile in the 1550 nm region both experimentally and theoretically. The realized scheme automatically generates gain-defining phase that is environmentally stable, making it advantageous for building phase-sensitive transmission links.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. M. Caves, "Quantum limits on noise in linear amplifiers," Phys. Rev. D 26, 1817-1839 (1982).
    [CrossRef]
  2. H. P. Yuen, "Design of transparent optical networks using novel quantum amplifiers and sources," Opt. Lett. 12 789-791 (1987).
    [CrossRef] [PubMed]
  3. H. P. Yuen, "Reduction of quantum fluctuation and suppression of the Gordon-Haus effect with phase-sensitive linear amplifiers," Opt. Lett. 17, 73-75 (1992).
    [CrossRef] [PubMed]
  4. M. E. Marhic, C. H. Hsia, and J. M. Jeong, "Optical amplification in a nonlinear fiber interferometer," Electron. Lett. 27, 210-211 (1991).
    [CrossRef]
  5. G. Bartolini, R. D. Li, P. Kumar,W. Riha, and K. V. Reddy, "1.5- µm phase-sensitive amplifier for ultrahigh-speed communications," in Proc. Opt. Fiber Commun. Conf. (Optical Society of America, Washington, D.C., 1994), pp. 202-203.
  6. D. Levandovsky, M. Vasilyev, and P. Kumar, "Amplitude squeezing of light by means of a phase-sensitive fiber parametric amplifier," Opt. Lett. 24, 984-986 (1999).
    [CrossRef]
  7. D. Levandovsky, M. Vasilyev, and P. Kumar, "Near-noiseless amplification of light by a phase-sensitive fibre amplifier," Pramana J. Phys. 56, 281-285 (2001).
    [CrossRef]
  8. W. Imajuku, A. Takada, Y. Yamabayashi, "Low-noise amplification under the 3 dB noise figure in high-gain phase-sensitive fibre amplifier," Electron. Lett. 35, 1954-1955 (1999).
    [CrossRef]
  9. W. Imajuku, A. Takada and Y. Yamabayashi, "Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit," Electron. Lett. 36, 63-64 (2000).
    [CrossRef]
  10. G. D. Bartolini, D. K. Serkland, P. Kumar, W. L. Kath, "All-optical storage of a picosecond-pulse packet using parametric amplification," IEEE Photonics Technol. Lett. 9, 1020-1022 (1997).
    [CrossRef]
  11. K. Croussore, I. Kim, Y. Han, C. Kim, G. F. Li and S. Radic, "Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification," Opt. Express 13, 3945-3950 (2005).
    [CrossRef] [PubMed]
  12. R. M. Shelby, M. D. Levenson, and P. W. Bayer, "Guided acoustic-wave Brillouin scattering," Phys. Rev. B 31, 5244-5252 (1985).
    [CrossRef]
  13. K. Bergman, C. R. Doerr, H. A. Haus, and M. Shirasaki, "Sub-shot-noise measurement with fiber-squeezed optical pulses," Opt. Lett. 18, 643-645 (1993).
    [CrossRef] [PubMed]
  14. A. Takada,W. Imajuku, "In-line optical phase-sensitive amplifier employing pump laser injection-locked to input signal light," Electron. Lett. 34, 274-275 (1998).
    [CrossRef]
  15. W. Imajuku, A. Takada, "In-line phase-sensitive amplifier with optical-PLL-controlled internal pump light source," Electron. Lett. 33, 2155-2156 (1997).
    [CrossRef]
  16. C. J. McKinstrie and S. Radic, "Phase-sensitive amplification in a fiber," Opt. Express 12, 4973-4979 (2004).
    [CrossRef] [PubMed]
  17. M. D. Levenson, R. M. Shelby, and S. H. Perlmutter, "Squeezing of classical noise by nondegenerate four-wave mixing in an optical fiber," Opt. Lett. 10, 514-516 (1985).
    [CrossRef] [PubMed]
  18. I. Bar-Joseph, A. A. Friesem, R. G. Waarts, and H. H. Yaffe, "Parametric interaction of a modulated wave in a single-mode fiber," Opt. Lett. 11, 534-536 (1986).
    [CrossRef] [PubMed]
  19. R. Tang, P. Devgan, P. L. Voss, V. S. Grigoryan, and P. Kumar, "In-Line Frequency-Nondegenerate Phase- Sensitive Fiber-Optical Parametric Amplifier," IEEE Photonics Technol. Lett. 17, 1845-1847 (2005).
    [CrossRef]
  20. R. Tang, P. Devgan, V. S. Grigoryan, and P. Kumar, "Inline frequency-non-degenerate phase-sensitive fibre parametric amplifier for fibre-optic communication," Electron. Lett. 41, 1072-1073 (2005).
    [CrossRef]
  21. P. Kumar, J. Lasri, P. Devgan, and R. Tang, "Fiber Nonlinearity Based Devices for Advanced Fiber-Optic Communication and Signal Processing," in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro- Optics Society, Tucson, Arizona, October 26-30, 2003; Vol. 1, pp. 103-104.
  22. M. Vasilyev, "Distributed phase-sensitive amplification," Opt. Express 13, 7563-7571 (2005).
    [CrossRef] [PubMed]
  23. G. Cappellini and S. Trillo, "Third-order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects," J. Opt. Soc. Am. B 8, 824-831 (1991).
    [CrossRef]
  24. M. Farahmand and M. de Sterke, "Parametric amplification in presence of dispersion fluctuations," Opt. Express 12, 136-142 (2004).
    [CrossRef] [PubMed]
  25. J. M. C. Boggio, A. Guimaraes, F. A. Callegari, J. D. Marconi, H. L. Fragnito, "Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion," Opt. Commun. 249, 451-472 (2005).
    [CrossRef]
  26. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).

Electron. Lett.

W. Imajuku, A. Takada, Y. Yamabayashi, "Low-noise amplification under the 3 dB noise figure in high-gain phase-sensitive fibre amplifier," Electron. Lett. 35, 1954-1955 (1999).
[CrossRef]

W. Imajuku, A. Takada and Y. Yamabayashi, "Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit," Electron. Lett. 36, 63-64 (2000).
[CrossRef]

M. E. Marhic, C. H. Hsia, and J. M. Jeong, "Optical amplification in a nonlinear fiber interferometer," Electron. Lett. 27, 210-211 (1991).
[CrossRef]

A. Takada,W. Imajuku, "In-line optical phase-sensitive amplifier employing pump laser injection-locked to input signal light," Electron. Lett. 34, 274-275 (1998).
[CrossRef]

W. Imajuku, A. Takada, "In-line phase-sensitive amplifier with optical-PLL-controlled internal pump light source," Electron. Lett. 33, 2155-2156 (1997).
[CrossRef]

R. Tang, P. Devgan, V. S. Grigoryan, and P. Kumar, "Inline frequency-non-degenerate phase-sensitive fibre parametric amplifier for fibre-optic communication," Electron. Lett. 41, 1072-1073 (2005).
[CrossRef]

IEEE Lasers and Electro- Optics

P. Kumar, J. Lasri, P. Devgan, and R. Tang, "Fiber Nonlinearity Based Devices for Advanced Fiber-Optic Communication and Signal Processing," in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro- Optics Society, Tucson, Arizona, October 26-30, 2003; Vol. 1, pp. 103-104.

IEEE Photonics Technol. Lett.

R. Tang, P. Devgan, P. L. Voss, V. S. Grigoryan, and P. Kumar, "In-Line Frequency-Nondegenerate Phase- Sensitive Fiber-Optical Parametric Amplifier," IEEE Photonics Technol. Lett. 17, 1845-1847 (2005).
[CrossRef]

G. D. Bartolini, D. K. Serkland, P. Kumar, W. L. Kath, "All-optical storage of a picosecond-pulse packet using parametric amplification," IEEE Photonics Technol. Lett. 9, 1020-1022 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

J. M. C. Boggio, A. Guimaraes, F. A. Callegari, J. D. Marconi, H. L. Fragnito, "Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion," Opt. Commun. 249, 451-472 (2005).
[CrossRef]

Opt. Express

Opt. Fiber Commun. Conf.

G. Bartolini, R. D. Li, P. Kumar,W. Riha, and K. V. Reddy, "1.5- µm phase-sensitive amplifier for ultrahigh-speed communications," in Proc. Opt. Fiber Commun. Conf. (Optical Society of America, Washington, D.C., 1994), pp. 202-203.

Opt. Lett.

Phys. Rev. B

R. M. Shelby, M. D. Levenson, and P. W. Bayer, "Guided acoustic-wave Brillouin scattering," Phys. Rev. B 31, 5244-5252 (1985).
[CrossRef]

Phys. Rev. D

C. M. Caves, "Quantum limits on noise in linear amplifiers," Phys. Rev. D 26, 1817-1839 (1982).
[CrossRef]

Pramana J. Phys.

D. Levandovsky, M. Vasilyev, and P. Kumar, "Near-noiseless amplification of light by a phase-sensitive fibre amplifier," Pramana J. Phys. 56, 281-285 (2001).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the phase-sensitive fiber parametric amplification model; p: pump, s: signal, i: idler.

Fig. 2.
Fig. 2.

(a): Plot of the sine values of the relative phase at the input of DSF2; (b): Plot of the calculated gain of the PSA (DSF2).

Fig. 3.
Fig. 3.

Experimental setup of the PSA based on a nondegenerate FOPA; PM: phase modulator; OBF: optical bandpass filter; ONF: optical notch filter; FPC: fiber polarization controller; TLS: tunable laser source; DFB: distributed feedback laser.

Fig. 4.
Fig. 4.

(a) Measured input (black) and output (blue) PF spectra of DSF2 with 10-m-long SMF. (b) Measured (black) and calculated (blue) PF gain with 10-m-long SMF. (c) and (d) show the measurements and calculations [similar to (a) and (b), respectively] for a 15-m-long SMF.

Fig. 5.
Fig. 5.

Calculated (black curve) and measured gain (diamonds) and attenuation (squares) of the PSA segment for (a) 1000-m-long PIA and 500-m-long PSA and (b) 500-m-long PIA and 1000-m-long PSA.

Fig. 6.
Fig. 6.

Measured gain with input idler (squares), without input idler (triangles), and the difference of gains with and without input idler (circles). (a) and (b) are for measurement results with 500-m-long and 1000-m-long DSFs, respectively.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

d P p dz = α P p 4 γ ( P p 2 P s P i ) 1 2 sin θ ,
d P s dz = α P s 2 γ ( P p 2 P s P i ) 1 2 sin θ ,
d P i dz = α P i 2 γ ( P p 2 P s P i ) 1 2 sin θ ,
dz = Δ β + γ { 2 P p P s P i
+ [ ( P p 2 P s P i ) 1 2 + ( P p 2 P i P s ) 1 2 4 ( P s P i ) 1 2 ] cos θ } ,
θ ( z ) = Δ βz + ϕ s ( z ) + ϕ i ( z ) 2 ϕ p ( z ) ,
θ In _ PSA ( ω ) = θ Out _ SMF ( ω ) = θ Out _ PIA ( ω ) + Δ β L SMF
θ Out _ PIA ( ω ) + β 2 ( ω ω p ) 2 L SMF ,
θ In _ PSA ( λ ) θ Out _ PIA ( λ ) 2 πc ( λ p λ λ ) 2 D L SMF ,
G PSA ( θ ) = 1 + { 1 + 4 γ 2 P p 2 η 2 + κ 2 + 4 γκ P p η cos ( θ ) 4 g 2 } sinh 2 ( gL )
+ γ P p η sin ( θ ) g sinh ( 2 gL ) ,
G max with idler = 1 + 2 sinh 2 ( gL ) + sinh ( 2 gL )
= [ exp ( gL ) ] 2 .
G max without idler = 1 + sinh 2 ( gL )
[ exp ( gL ) 2 ] 2 , for gL 1 .
d B s dz = P p exp ( i 2 ϕ p ) exp ( iκz ) B i * ,
d B i * dz = P p exp ( i 2 ϕ p ) exp ( iκz ) B s .
B s ( z ) = ( a 3 e gz + b 3 e gz ) exp ( iκz 2 ) ,
B i * ( z ) = ( a 4 e gz + b 4 e gz ) exp ( iκz 2 ) ,
a 3 = ( g + 2 ) B s ( 0 ) + P p e 2 i ϕ p B i * ( 0 ) 2 g ,
b 3 = ( g 2 ) B s ( 0 ) P p e 2 i ϕ p B i * ( 0 ) 2 g ,
a 4 = ( g 2 ) B i * ( 0 ) P p e 2 i ϕ p B s ( 0 ) 2 g ,
b 4 = ( g + 2 ) B i * ( 0 ) + P p e 2 i ϕ p B s ( 0 ) 2 g .
B s ( z ) = { ( g + 2 ) B s ( 0 ) + P p e i 2 ϕ p B i * ( 0 ) 2 g e gz
+ ( g 2 ) B s ( 0 ) P p e i 2 ϕ p B i * ( 0 ) 2 g e gz } e i κz 2 ,
B i * ( z ) = { ( g 2 ) B i * ( 0 ) P p e i 2 ϕ p B s ( 0 ) 2 g e gz
+ ( g + 2 ) B i * ( 0 ) + P p e i 2 ϕ p B s ( 0 ) 2 g e gz } e i κz 2 .
B i * ( 0 ) = η B s ( 0 ) exp ( i θ d ) ,
G PSA = 1 + { 1 + 4 γ 2 P p 2 η 2 + κ 2 + 4 γκ P p η cos ( θ ) 4 g 2 } sinh 2 ( gL )
+ γ P p η sin ( θ ) g sinh ( 2 gL ) ,

Metrics