Abstract

Saturated absorption is studied in overtone transitions of C2H2 and H13CN molecules confined in the hollow core of a photonic bandgap fiber. The dynamics of filling and venting the fiber is markedly different for the two molecules owing to the presence of a permanent dipole moment in one of them. Saturation is observed for input power down to 10 mW, and well resolved Lamb dips limited by transit time broadening across the 10 μm core diameter are observed with a counter-propagating probe beam.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single- Mode Photonic Bandgap Guidance of Light in Air," Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  2. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibers," Opt. Express 13, 236-244 (2005).
    [CrossRef] [PubMed]
  3. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004).
    [CrossRef] [PubMed]
  4. J. Tuominen, T. Ritari, H. Ludvigsen, J. C. Petersen, "‘Gas filled photonic bandgap fibers as wavelength references," Opt. Commun. 255, 272-277 (2005).
    [CrossRef]
  5. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers," Nature 434, 488-491 (2005)
    [CrossRef] [PubMed]
  6. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant Optical Interactions with Molecules Confined in Photonic Band-Gap Fibers," Phys. Rev. Lett. 94, 093902 (2005).
    [CrossRef] [PubMed]
  7. F. Benabid, P. S. Light, F. Couny, and P. S. Russell, "Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF," Opt. Express 13, 5694-5703 (2005).
    [CrossRef] [PubMed]
  8. M. Faheem, R. Thapa, and K. L. Corwin, "Spectral hole burning of acetylene gas inside a photonic bandgap optical fiber," Conference of Lasers and Electro Optics CLEO 2005, Long Beach Calif., May 2005.
  9. http://www.crystal-fibre.com.
  10. K. Nakagawa, M. de Labachelerie, Y. Awaji, M. Kourogi, "Accurate optical frequency atlas of the 1.5- m bands of acetylene," J. Opt. Soc. Am. B 13, 2708-2714 (1996).
  11. A. Yariv, Quantum Electronics (John Wiley & sons, 1988), Chap. 8.
  12. K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004).
    [CrossRef] [PubMed]
  13. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004).
    [CrossRef] [PubMed]
  14. W. C. Swann and S. L. Gilbert, "Line centers, pressure shift and pressure broadening of 1530-1560 nm hydrogen cyanide wavelength calibration lines," J. Opt. Soc. Am. B, 22, 1749-1756 (2005).
    [CrossRef]
  15. Mitsuhiro Kusaba and Jes Henningsen, "The ν1 + ν3 and the ν1 + ν2 + ν1 4 + ν-1 5 combination bands of 13C2H2. Linestrengths, broadening parameters and pressure shifts," J. Mol. Spectrosc 209 (2001).
    [CrossRef]
  16. K. Shimoda, High-Resolution Laser Spectroscopy, K. Shimoda Ed. (Springer, New York, 1976) pp 11-49, Chap. 2.
    [CrossRef]

Conf. of Lasers and Electro Optics 2005 (1)

M. Faheem, R. Thapa, and K. L. Corwin, "Spectral hole burning of acetylene gas inside a photonic bandgap optical fiber," Conference of Lasers and Electro Optics CLEO 2005, Long Beach Calif., May 2005.

J. Mol. Spectrosc (1)

Mitsuhiro Kusaba and Jes Henningsen, "The ν1 + ν3 and the ν1 + ν2 + ν1 4 + ν-1 5 combination bands of 13C2H2. Linestrengths, broadening parameters and pressure shifts," J. Mol. Spectrosc 209 (2001).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers," Nature 434, 488-491 (2005)
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Tuominen, T. Ritari, H. Ludvigsen, J. C. Petersen, "‘Gas filled photonic bandgap fibers as wavelength references," Opt. Commun. 255, 272-277 (2005).
[CrossRef]

Opt. Express (5)

Phys. Rev. Lett. (1)

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant Optical Interactions with Molecules Confined in Photonic Band-Gap Fibers," Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single- Mode Photonic Bandgap Guidance of Light in Air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Other (3)

http://www.crystal-fibre.com.

K. Shimoda, High-Resolution Laser Spectroscopy, K. Shimoda Ed. (Springer, New York, 1976) pp 11-49, Chap. 2.
[CrossRef]

A. Yariv, Quantum Electronics (John Wiley & sons, 1988), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental configuration for pump-probe configuration with two polarizing beamsplitters PBS1 and PBS2, a chopper CH inserted in the pump beam, a vacuum box with sapphire windows W1 and W2, a thin film beamsplitter BS, and two Ge detectors D1 and D2.

Fig. 2.
Fig. 2.

Average pressure in the fiber during filling and venting with acetylene. Left: Initial filling of 1.39 m fiber to 8.5 Pa, further filling to 149 Pa, and venting. Right: Filling of 6.35 m fiber to 20 Pa and venting.

Fig. 3.
Fig. 3.

Filling with hydrogen cyanide. Filled squares indicate the pressure external to the fiber with gas admitted in four steps. Open circles show the absorbance which represents the average pressure in the core of the fiber.

Fig. 4.
Fig. 4.

Peak absorbance for the 6.35 m fiber at 10 Pa (upper) and corresponding saturation power (lower) as a function of the exit power away from the absorption line.

Fig. 5.
Fig. 5.

Lamb dips in acetylene and hydrogen cyanide at an average power in the fiber of 30 mW. The insert shows from above the line center region at an average power of 6 mW, 20 mW, and 30 mW. The background structure is attributed to surface modes.

Fig. 6.
Fig. 6.

Pump absorption (upper graph), and Lamb dip (lower graph) in pump-probe configuration. The bottom trace shows the residual of a Lorentz fit.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( L ) = I ( 0 ) exp ( αL )
α = N S g ( ν ν 0 ) = p k T S g ( ν ν 0 )
d I d z = α I = α 0 I 1 + I I s
α 0 L = 2 ( 1 + I 0 / I s 1 + I L / I s ) + ln ( 1 + I L / I s + 1 ) ( 1 + I 0 / I s 1 ) ( 1 + I L / I s 1 ) ( 1 + I 0 / I s + 1 )
Δ ν = 0.444 u L

Metrics