## Abstract

This paper studies the problem of signal-quality-guaranteed lightpath provisioning in survivable translucent optical networks under dynamic traffic. A new protection scheme, called regeneration-segment protection (RSP), is proposed. Provisioning approaches with shared path protection and shared RSP are presented. Two main signal quality constraints are integrated with the provisioning problem. Different regenerator placement strategies for working path and protection path are employed. Joint path selection method is used to select the “optimal” working-protection pair. With the above considerations, survivable lightpath provisioning with signal-quality-guarantees is achieved in a cost-effective manner. Results show that in a moderate-size network, RSP has less blocking probability than path protection when the network load is low or modest. Besides, RSP obtains better performance in terms of recovery time than path protection in all network scenarios.

© 2005 Optical Society of America

Full Article |

PDF Article
### Equations (15)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${\mathit{OSNR}}_{\mathit{b}}\ge {\mathit{OSNR}}_{min}$$
(2)
$$\mathit{BER}\left(Q\right)\cong \left(\frac{1}{\sqrt{2\pi}}\right)\xb7\left(\frac{\mathrm{exp}\left(\frac{-{Q}^{2}}{2}\right)}{Q}\right)$$
(3)
$${\mathit{OSNR}}_{min}=\frac{\left(1+r\right){\left(1+\sqrt{r}\right)}^{2}}{{\left(1-r\right)}^{2}}\xb7\frac{\mathit{Be}}{\mathit{Bo}}\xb7{Q}^{2}$$
(4)
$${P}_{\mathit{ASE}}\left(k,j\right)=2{n}_{\mathit{sp}}\left(k,j\right)\xb7\left(G\left(k,j\right)-1\right)\xb7h\xb7v\xb7{B}_{o}$$
(5)
$${P}_{\mathit{ASE}}\left(a,b\right)={\Sigma}_{1}^{M}\left({\Sigma}_{j\in \mathit{Link}\left(k\right)}{P}_{\mathit{ASE}}\left(k,j\right)\right)$$
(6)
$${\mathit{OSNR}}_{b}=\frac{{P}_{l}}{{P}_{\mathit{ASE}}\left(a,b\right)}$$
(7)
$$\Delta {t}_{\mathit{PMD}}\left(a,b\right)\le \frac{\alpha}{B}$$
(8)
$$\Delta {t}_{\mathit{PMD}}\left(a,b\right)=\sqrt{{\Sigma}_{1}^{M}{D}_{\mathit{PMD}}^{2}\left(k\right)\xb7L\left(k\right)}$$
(9)
$${\mathit{OSNR}}_{\mathit{j}}\ge {\mathit{OSNR}}_{min}$$
(10)
$$\Delta {t}_{\mathit{PMD}}\left(i,j\right)\le \frac{\alpha}{B}$$
(11)
$${\mathit{OSNR}}_{j+1}<{\mathit{OSNR}}_{min}\phantom{\rule{.2em}{0ex}}\phantom{\rule{.2em}{0ex}}\mathit{or}\phantom{\rule{.2em}{0ex}}\phantom{\rule{.2em}{0ex}}\Delta {t}_{\mathit{PMD}}(i,j+1)\text{}>\frac{\alpha}{B}$$
(12)
$${C}_{p}\left(\lambda \right)=\{\begin{array}{c}{\epsilon}_{1}\text{}\times C\left(\lambda \right)\phantom{\rule{1.2em}{0ex}}\mathit{if}\phantom{\rule{.2em}{0ex}}\lambda \phantom{\rule{.2em}{0ex}}\mathit{is\; usd\; by\; other\; protection\; paths\; and\; sharable}\\ C\left(\lambda \right)\phantom{\rule{3.2em}{0ex}}\mathit{if}\phantom{\rule{.2em}{0ex}}\lambda \phantom{\rule{.2em}{0ex}}\mathit{is\; free}\phantom{\rule{14.2em}{0ex}}\end{array}$$
(13)
$${C}_{p}\left(r\right)=\{\begin{array}{cc}0\phantom{\rule{1.8em}{0ex}}& \mathit{if\; r\; is\; used}\phantom{\rule{.2em}{0ex}}\mathit{by\; the}\phantom{\rule{.2em}{0ex}}\mathit{corresponding\; working\; path}\phantom{\rule{1.em}{0ex}}\\ {\epsilon}_{2}\text{}\times C\left(r\right)& \mathit{if\; r\; is\; used}\phantom{\rule{.2em}{0ex}}\mathit{by\; other\; protection}\phantom{\rule{.2em}{0ex}}\mathit{paths\; and\; sharable}\\ C\left(r\right)\phantom{\rule{1.2em}{0ex}}& \mathit{if}\phantom{\rule{.2em}{0ex}}\mathit{r}\phantom{\rule{.2em}{0ex}}\mathit{is}\mathit{free}\phantom{\rule{15.8em}{0ex}}\end{array}$$
(14)
$$\mathit{CW}={\Sigma}_{\lambda \in p}{C}_{w}\left(\lambda \right)+{\Sigma}_{\lambda \in p}{C}_{w}\left(r\right)$$
(15)
$$\mathit{CP}={\Sigma}_{\lambda \in p}{C}_{p}\left(\lambda \right)+{\Sigma}_{\lambda \in p}{C}_{p}\left(r\right)$$