Abstract

For the first time, a new-type flat focal field arrayed waveguide grating (AWG) demultiplexer, with the focal signals of all wavelengths of operation focusing along a straight line, is designed based on the aberration theory and fabricated based on a newly developed negative tone epoxy Novolak resin (ENR) polymer using electron-beam direct writing. A polymeric four-channel 400GHz spacing flat focal field AWG demultiplexer is fabricated and tested. Four modal images from the output waveguides are observed and the measured transmission spectra is presented. And we make error analysis.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. K. Smit, "New focusing and dispersive planar component based on optical phased array," Electron. Lett. 24, 385-386 (1988).
    [CrossRef]
  2. C. Dragone, "An N×N optical multiplexer using a planar arrangement of two star couplers," IEEE Photonics Technol. Lett. 3, 812-815 (1991).
    [CrossRef]
  3. M. K. Smit and Cor van Dam, "PHASAR-based WDM-devices: principles, design and applications," IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996).
    [CrossRef]
  4. Y. Hida, Y. Hibino, M. Itoh, A. Sugita, A. Himeno, and Y. Ohmori, "Fabrication of low-loss and polarization-insensitive 256 channel arrayed-waveguide grating with 25GHz spacing using 1.5% Ä waveguides," Electron. Lett. 36, 820-821 (2000).
    [CrossRef]
  5. S. Kamei, K. Iemura, A. Kaneko, Y. Inoue, T. Shibata, H. Takahashi, and A. Sugita, "1.5%-Ä athermal arrayed-waveguide grating multi/demultiplexer with very low loss groove design," IEEE Photonics Technol. Lett. 17, 588-590 (2005).
    [CrossRef]
  6. D. Y. Wang, G. F. Jin, Y. B. Yan, and M. X. Wu, "Aberration theory of arrayed waveguide grating," J. Lightwave Technol. 19, 279-284 (2001).
    [CrossRef]
  7. S. Lu, W. H. Wong, E. Y. B. Pun, Y. B. Yan, D. Y. Wang, D. E. Yi, and G. F. Jin, "Design of flat-field arrayed waveguide grating with three stigmatic points," Opt. Quantum Electron. 35, 783-790 (2003).
    [CrossRef]
  8. Y. Hida, Y. Inoue, and S. Imamura, "Polymeric arrayed-waveguide grating multiplexer operating around 1.3 µm," Electron. Lett. 30, 959-960 (1994).
    [CrossRef]
  9. M. B. J. Diemeer, L. H. Spiekman, R. Ramsamoeji, and M. K. Smit, "Polymeric phased array wavelength multiplexer operating around 1550nm," Electron. Lett. 32, 1132-1133 (1996).
    [CrossRef]
  10. Y. H. Min, M. H. Lee, J. J. Ju, S. K. Park, and J. Y. Do, "Polymeric 16×16 arrayed-waveguide grating router using fluorinated polyethers operating around 1550nm," IEEE J. Sel. Top. Quantum Electron. 7, 806-811 (2001).
    [CrossRef]
  11. L. Eldada and L. W. Shacklette, "Advances in polymer integrated optics," IEEE J. Sel. Top. Quantum Electron. 6, 54-68 (2000).
    [CrossRef]
  12. A. Yeniay, R. Y. Gao, K. Takayama, R. F. Gao, and A. F. Garito, "Ultra-low-loss polymer waveguides," J. Lightwave Technol. 22, 154-158 (2004).
    [CrossRef]
  13. W. H. Wong and E. Y. B. Pun, "Exposure characteristics and three-dimensional profiling of SU8C resist using electron beam lithography," J. Vac. Sci. Technol. B 19, 732-735 (2001).
    [CrossRef]
  14. W.H. Wong, J. Zhou, and E. Y. B. Pun, "Low-loss polymeric optical waveguides using electron-beam direct writing," Appl. Phys. Lett. 78, 2110-2112 (2001).
    [CrossRef]
  15. <a href="http://www.c2v.nl/">http://www.c2v.nl/</a>
  16. S. Lu, Y. B. Yan, G. F. Jin, W. H. Wong, and E. Y. B. Pun, "Polymeric flat focal field arrayed waveguide grating using electron-beam direct writing," Chin. Opt. Lett. 2, 362-363 (2004).
  17. Y. Kokubun, M. Takizawa, and S. Taga, "Three-dimensional athermal waveguides for temperature independent lightwave devices," Electron. Lett. 30, 1223-1224 (1994).
    [CrossRef]

Appl. Phys. Lett. (1)

W.H. Wong, J. Zhou, and E. Y. B. Pun, "Low-loss polymeric optical waveguides using electron-beam direct writing," Appl. Phys. Lett. 78, 2110-2112 (2001).
[CrossRef]

Chin. Opt. Lett. (1)

Electron. Lett. (5)

Y. Kokubun, M. Takizawa, and S. Taga, "Three-dimensional athermal waveguides for temperature independent lightwave devices," Electron. Lett. 30, 1223-1224 (1994).
[CrossRef]

M. K. Smit, "New focusing and dispersive planar component based on optical phased array," Electron. Lett. 24, 385-386 (1988).
[CrossRef]

Y. Hida, Y. Hibino, M. Itoh, A. Sugita, A. Himeno, and Y. Ohmori, "Fabrication of low-loss and polarization-insensitive 256 channel arrayed-waveguide grating with 25GHz spacing using 1.5% Ä waveguides," Electron. Lett. 36, 820-821 (2000).
[CrossRef]

Y. Hida, Y. Inoue, and S. Imamura, "Polymeric arrayed-waveguide grating multiplexer operating around 1.3 µm," Electron. Lett. 30, 959-960 (1994).
[CrossRef]

M. B. J. Diemeer, L. H. Spiekman, R. Ramsamoeji, and M. K. Smit, "Polymeric phased array wavelength multiplexer operating around 1550nm," Electron. Lett. 32, 1132-1133 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

Y. H. Min, M. H. Lee, J. J. Ju, S. K. Park, and J. Y. Do, "Polymeric 16×16 arrayed-waveguide grating router using fluorinated polyethers operating around 1550nm," IEEE J. Sel. Top. Quantum Electron. 7, 806-811 (2001).
[CrossRef]

L. Eldada and L. W. Shacklette, "Advances in polymer integrated optics," IEEE J. Sel. Top. Quantum Electron. 6, 54-68 (2000).
[CrossRef]

M. K. Smit and Cor van Dam, "PHASAR-based WDM-devices: principles, design and applications," IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

C. Dragone, "An N×N optical multiplexer using a planar arrangement of two star couplers," IEEE Photonics Technol. Lett. 3, 812-815 (1991).
[CrossRef]

S. Kamei, K. Iemura, A. Kaneko, Y. Inoue, T. Shibata, H. Takahashi, and A. Sugita, "1.5%-Ä athermal arrayed-waveguide grating multi/demultiplexer with very low loss groove design," IEEE Photonics Technol. Lett. 17, 588-590 (2005).
[CrossRef]

J. Lightwave Technol. (2)

J. Vac. Sci. Technol. B (1)

W. H. Wong and E. Y. B. Pun, "Exposure characteristics and three-dimensional profiling of SU8C resist using electron beam lithography," J. Vac. Sci. Technol. B 19, 732-735 (2001).
[CrossRef]

Opt. Quantum Electron. (1)

S. Lu, W. H. Wong, E. Y. B. Pun, Y. B. Yan, D. Y. Wang, D. E. Yi, and G. F. Jin, "Design of flat-field arrayed waveguide grating with three stigmatic points," Opt. Quantum Electron. 35, 783-790 (2003).
[CrossRef]

Other (1)

<a href="http://www.c2v.nl/">http://www.c2v.nl/</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Schematic diagram for AWG aberration analysis.

Fig. 2.
Fig. 2.

Schematic diagram of flat focal field AWG.

Fig. 3.
Fig. 3.

Output star coupler of flat focal field AWG directly connecting with: (a) fiber-array, (b) photodetectors.

Fig. 4.
Fig. 4.

2D beam propagation simulation of the polymeric four-channel 400GHz spacing flat focal field AWG demultiplexer: (a) λin =1545.2nm, (b) λin =1548.4nm, (c) λin =1551.6nm, (d) λin =1554.8nm.

Fig. 5.
Fig. 5.

Simulated transmission spectra of the polymeric four-channel 400GHz spacing flat focal field AWG demultiplexer.

Fig. 6.
Fig. 6.

Aberration curve of the polymeric four-channel 400GHz spacing flat focal field AWG comparing with Rowland-type AWG.

Fig. 7.
Fig. 7.

Geometry layout of flat focal field AWG.

Fig. 8.
Fig. 8.

The optimized tapered waveguides: (a) Input and output waveguides, (b) The aperture of phased-array waveguides.

Fig. 9.
Fig. 9.

Single-mode polymeric waveguide: (a) geometry structure, (b) field distribution of the fundamental mode.

Fig. 10.
Fig. 10.

Fabrication process of the polymeric flat focal field AWG demultiplexer.

Fig. 11.
Fig. 11.

Layout of the fabricated polymeric four-channel 400GHz spacing flat focal field AWG demultiplexer: (a) layout, (b) magnified (×200) image of region where tapered phased-array waveguides meet slab.

Fig. 12.
Fig. 12.

Output modal images of the polymeric four-channel 400GHz spacing flat focal field AWG demultiplexer.

Fig. 13.
Fig. 13.

Testing results of the polymeric four-channel 400GHz spacing flat focal field AWG demultiplexer: (a) channel spectral responses, (b) transmission spectra.

Fig. 14.
Fig. 14.

Fabricated channel waveguide: (a) SEM image of the cross-section, (b) geometry structure, (c) field distribution of the first-order mode.

Fig. 15.
Fig. 15.

Effective refractive index of the fabricated channel waveguide.

Fig. 16.
Fig. 16.

Schematic diagram of multiple-beam interference defocusing in the output star coupler.

Tables (2)

Tables Icon

Table 1. Design parameters of the polymeric four-channel 400GHz spacing flat focal field AWG demultiplexer.

Tables Icon

Table 2. Insertion loss of the polymeric four-channel 400GHz spacing flat focal field AWG demultiplexer.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

F ( w ) = N s [ r A ( w ) + r B ( w ) ] + N w L ( w ) + G ( w ) m λ
Φ ( w ) = Φ ( 0 ) + Φ ( 1 ) ( 0 ) w + Φ ( 2 ) ( 0 ) w 2 2 + + Φ ( n ) ( 0 ) w n n ! + Φ = F , L , G , u
r α ( 1 ) ( 0 ) = y α r α
r α ( n ) ( 0 ) = 1 2 k = 1 n 1 C n k [ u ( k ) ( 0 ) u ( n k ) ( 0 ) r α ( k ) ( 0 ) r α ( n k ) ( 0 ) ] r α
u ( n ) ( 0 ) x α r α + δ ( n 2 ) r α ( n > 1 )
r α = α O = ( x α 2 + y α 2 ) 1 2 α = A , B
F ( n ) ( 0 ) = N s [ r A ( n ) ( 0 ) + r B ( n ) ( 0 ) ] + N w L ( n ) ( 0 ) + G ( n ) ( 0 ) m λ
F ( n ) ( 0 ) = N s [ r A ( n ) ( 0 ) + r k ( n ) ( 0 ) ] + N w L ( n ) ( 0 ) + G ( n ) ( 0 ) m λ k k = 1,2,3
r k = ( x k 2 + y k 2 ) 1 2 k = 1 , 2,3
x k = R
y k = R tan ( θ k )
S i + R c i α i = l i 2 + f i
S i cos α i + R c i sin α i = L 2
Δ φ = β Δ L = 2 π λ N w Δ L
δ λ = N w ( fabricated ) λ c N w ( designed ) λ c + 6.22 nm
R = N s N w d a D N ˜ w m Δ λ

Metrics