Abstract

We have investigated the possibility of a multimode fiber link for a quantum channel. Transmission of light in an extremely underfilled mode distribution promises a single-mode–like behavior in the multimode fiber. To demonstrate the performance of the fiber link we performed quantum key distribution, on the basis of the BB84 four-state protocol, over 550 m of an installed multimode optical fiber local area network, and the quantum-bit-error rate of 1.09 % was achieved.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of IEEE International Conference on computers, systems, and signal processing (IEEE, New York, 1984), pp. 175-179.
  2. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-28 (1992).
  3. A. Muller, T. Huttner, W. Tittel, H. Zbinden, and N. Gisin, "Plug and play systems for quantum cryptography," Appl. Phys. Lett. 70, 793-795 (1997).
    [CrossRef]
  4. G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, "Automated 'plug & play' quantum key distribution," Electron. Lett. 34, 2116-2117 (1998).
    [CrossRef]
  5. D. Bethune and W. Risk, "An auto compensation fiber-optic quantum cryptography system based on polarization splitting of light," IEEE J. Quantum Electron. 36, 340-347 (2000).
    [CrossRef]
  6. A. Yoshizawa and H. Tuchida, "A 1550 nm single-photon detector using a thermoelectrically cooled InGaAs avalanche photodiode," Jpn. J. Appl. Phys. Pt. 1 40, 200-201 (2001).
    [CrossRef]
  7. P. Hiskett, G. Bonfrate, G. Buller, and P. Townsend, "Eighty kilometer transmission experiment using an InGaAs/InP SPAD-based quantum cryptography receiver operating at 1.55 microns," J. Modern Opt. 48, 1957-1966 (2001).
  8. D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, "Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APD's," J. Modern Opt. 48, 1967-1982 (2001).
    [CrossRef]
  9. N. Namekata, Y. Makino, and S. Inoue, "Single-photon detector for long-distance fiber optic quantum key distribution,"Opt. Lett. 27, 954-956 (2002).
    [CrossRef]
  10. H. Kosaka, A. Tomita, Y. Nambu, T. Kimura, and K. Nakamura, "Single-photon interference experiment over 100 km for quantum cryptography system using a balanced gated-mode photon detector," Electron. Lett. 39, 1199-1200 (2003).
    [CrossRef]
  11. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug and play system," New J. Phys. 4, 41.1-41.8 (2002).
    [CrossRef]
  12. . P. D. Townsend, "Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems," IEEE Photon. Technol. Lett. 10, 1048-1050 (1998).
    [CrossRef]
  13. N. Namekata and S. Inoue, "Fiber-optic quantum key distribution at 1550 nm," in Proceedings of the ERATO Workshop on Quantum Information Science (JST, Tokyo, 2002), pp. 96-97.
  14. N. Brunner, V. Scarani, M. Wegmuller, M. Legre, and N. Gisin, "Direct measurement of superluminal group velocity and signal velocity in an optical fiber," Phys. Rev. Lett. 93, 203902 (2004).
    [CrossRef] [PubMed]
  15. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, "Avalanche photodiodes and quenching circuits for single-photon detection," Appl. Opt. 35, 1956-1963 (1996).
    [CrossRef] [PubMed]
  16. H. Zbinden, H. Bechman-Pasquinucci, N. Gisin and G. Ribordy, "Quantum cryptography," Appl. Phys. B 67, 743-748 (1998).
    [CrossRef]

Appl. Opt.

Appl. Phys. B

H. Zbinden, H. Bechman-Pasquinucci, N. Gisin and G. Ribordy, "Quantum cryptography," Appl. Phys. B 67, 743-748 (1998).
[CrossRef]

Appl. Phys. Lett.

A. Muller, T. Huttner, W. Tittel, H. Zbinden, and N. Gisin, "Plug and play systems for quantum cryptography," Appl. Phys. Lett. 70, 793-795 (1997).
[CrossRef]

Electron. Lett.

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, "Automated 'plug & play' quantum key distribution," Electron. Lett. 34, 2116-2117 (1998).
[CrossRef]

H. Kosaka, A. Tomita, Y. Nambu, T. Kimura, and K. Nakamura, "Single-photon interference experiment over 100 km for quantum cryptography system using a balanced gated-mode photon detector," Electron. Lett. 39, 1199-1200 (2003).
[CrossRef]

IEEE International Conference on compute

C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of IEEE International Conference on computers, systems, and signal processing (IEEE, New York, 1984), pp. 175-179.

IEEE J. Quantum Electron.

D. Bethune and W. Risk, "An auto compensation fiber-optic quantum cryptography system based on polarization splitting of light," IEEE J. Quantum Electron. 36, 340-347 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

. P. D. Townsend, "Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems," IEEE Photon. Technol. Lett. 10, 1048-1050 (1998).
[CrossRef]

J. Cryptology

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-28 (1992).

J. Modern Opt.

P. Hiskett, G. Bonfrate, G. Buller, and P. Townsend, "Eighty kilometer transmission experiment using an InGaAs/InP SPAD-based quantum cryptography receiver operating at 1.55 microns," J. Modern Opt. 48, 1957-1966 (2001).

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, "Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APD's," J. Modern Opt. 48, 1967-1982 (2001).
[CrossRef]

Jpn. J. Appl. Phys. Pt. 1

A. Yoshizawa and H. Tuchida, "A 1550 nm single-photon detector using a thermoelectrically cooled InGaAs avalanche photodiode," Jpn. J. Appl. Phys. Pt. 1 40, 200-201 (2001).
[CrossRef]

New J. Phys.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug and play system," New J. Phys. 4, 41.1-41.8 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

N. Brunner, V. Scarani, M. Wegmuller, M. Legre, and N. Gisin, "Direct measurement of superluminal group velocity and signal velocity in an optical fiber," Phys. Rev. Lett. 93, 203902 (2004).
[CrossRef] [PubMed]

Proceedings of the ERATO Workshop on Qua

N. Namekata and S. Inoue, "Fiber-optic quantum key distribution at 1550 nm," in Proceedings of the ERATO Workshop on Quantum Information Science (JST, Tokyo, 2002), pp. 96-97.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Illustration of the mode distribution in a graded index multimode fiber: (a)Equivalent mode distribution (b) Underfilled mode distribution

Fig. 2.
Fig. 2.

Measurement of group velocity dispersion based on a photon counting.

Fig. 3.
Fig. 3.

Profiles of light pulses after transmission through (a) only the single-mode fiber (Test 1), (b) only the multimode fiber (Test 2), (c) the multimode fiber after the single-mode fiber (Test 3).

Fig. 4.
Fig. 4.

Schematic diagram of quantum key distribution system: C Circulator; PBS1, PBS2 Polarizing beam splitters; SMF Single-mode fiber; PMF Polarization-maintaining fiber; MMF Multimode fiber; FC 50/50 fiber-optic coupler; AT Attenuator; PMA, PMB Phase modulators; FM Faraday mirror; D1, D2 Single-photon detectors; PG1, PG2 Pulse generators; AWGA, AWGB; Arbitrary waveform generators.

Fig. 5.
Fig. 5.

Count rates of single-photon detectors D1 and D2 versus Alice’s modulator voltage. The average photon number per pulse was ≃ 2, and Bob’s phase shift ΔϕB was set to 0 or -π/2. (a) 10.5 km single-mode fiber spool, (b) 550 m multimode fiber local area network.

Tables (2)

Tables Icon

Table 1. Tested combination of fibers

Tables Icon

Table 2. Summary of quantum-bit-error rates and bit rates

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

QBER = QBER opt + QBER dark + QBER after + QBER stray .
QBER opt = C wrong C right + C wrong ,
QBER dark = ( P dark , 1 + P dark , 2 ) 2 P phot + P dark , 1 + P dark , 2 ,
P phot = μ 2 ( L D 1 η 1 + L D 2 η 2 ) L i ( i = 1,2 ) .

Metrics