Abstract

We demonstrate a fundamental operation for generating complex waveforms in the optical domain – line-by-line pulse shaping control for optical arbitrary waveform generation (O-AWG). Independent manipulation of the spectral amplitude and phase of individual lines from a mode-locked frequency comb, or spectral line-by-line pulse shaping, leads to synthesis of user-specified ultrafast optical waveforms with unprecedented control. Coupled with recent advances in frequency stabilized mode-locked lasers, line-by-line pulse shaping control should have significant impact to fields drawing upon developments in the field of ultrafast science.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, U. Keller, "Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics," Science 286, 1507-1512 (1999).
    [CrossRef] [PubMed]
  2. P. Agostini, L. F. DiMauro, "The physics of attosecond light pulses," Rep. Prog. Phys. 67, 813-855 (2004)
    [CrossRef]
  3. C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnurer, C. Kan, M. Lenzner, P. Wobrauschek, F. Krausz, "Generation of coherent X-rays in the water window using 5-femtosecond laser pulses," Science 278, 661-664 (1997).
    [CrossRef]
  4. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, "Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  5. T. Udem, R. Holzwarth, T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
    [CrossRef] [PubMed]
  6. L. S. Ma, Z. Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S. A. Diddams, "Optical frequency synthesis and comparison with uncertainty at the 10-19 level," Science 303, 1843-1845 (2004).
    [CrossRef] [PubMed]
  7. A. Marian, M. C. Stowe, J. R. Lawall, D. Felint, J. Ye, "United time-frequency spectroscopy for dynamics and global structure," Science 306, 2063-2068 (2004).
    [CrossRef] [PubMed]
  8. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  9. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, "Chemistry - Whither the future of controlling quantum phenomena?," Science 288, 824-828 (2000).
    [CrossRef] [PubMed]
  10. T. Brixner, N. H. Damrauer, P. Niklaus, G. Gerber, "Photoselective adaptive femtosecond quantum control in the liquid phase," Nature 414, 57-60 (2001).
    [CrossRef] [PubMed]
  11. R. J. Levis, G. M. Menkir, H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001)
    [CrossRef] [PubMed]
  12. P. F. Tian, D. Keusters, Y. Suzaki, W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300, 1553-1555 (2003).
    [CrossRef] [PubMed]
  13. T. C. Weinacht, J. Ahn, P. H. Bucksbaum, "Controlling the shape of a quantum wavefunction," Nature 397, 233-235 (1999).
    [CrossRef]
  14. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, K. A. Nelson, "Femtosecond pulse sequences used for optical manipulation of molecular-motion," Science 247, 1317-1319 (1990).
    [CrossRef] [PubMed]
  15. M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, S. E. Harris, "Generation of a single-cycle optical pulse," Phys. Rev. Lett. 94, 033904 (2005).
    [CrossRef] [PubMed]
  16. N. Dudovich, D. Oron, Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
    [CrossRef] [PubMed]
  17. J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001(2004).
    [CrossRef] [PubMed]
  18. Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, "Four user, 2.5 Gb/s, spectrally coded O-CDMA system demonstration using low power nonlinear processing," J. Lightwave Technol. 23, 143-158 (2005).
    [CrossRef]
  19. R. P. Scott, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, S. J. B. Yoo, "Demonstration of an error-free 4x10 Gb/s multiuser SPECTS O-CDMA network testbed," IEEE Photon. Technol. Lett. 16, 2186-2188 (2004).
    [CrossRef]
  20. J. D. McKinney, D. E. Leaird, and A. M. Weiner, "Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper," Opt. Lett. 27, 1345-1347 (2002).
    [CrossRef]
  21. Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, "Spectral line-by-line pulse shaping," Opt. Lett. 30, 1557-1559 (2005).
    [CrossRef] [PubMed]
  22. T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, "Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser," IEEE Photon. Technol. Lett. 14, 1608-1610 (2002).
    [CrossRef]
  23. S. Etemad, T. Banwell, S. Galli, J. Jackel, R. Menendez, P. Toliver, J. Young, P. Delfyett, C. Price, and T. Turpin, "Optical-CDMA incorporating phase coding of coherent frequency bins: concept, simulation, experiment," in 2004 Optical Fiber Conf. (OFC2004), FG5, Los Angeles, CA, 2004.
  24. H. Sotobayashi, K. Kitayama, "325nm bandwidth supercontinuum generation at 10Gbit/s using dispersionflattened and non-decreasing normal dispersion fibre with pulse compression technique," Electron. Lett. 34, 1336-1337 (1998).
    [CrossRef]
  25. M. M. Wefers and K. A. Nelson, "Generation of high-fidelity programmable ultrafast optical waveforms," Opt. Lett. 20, 1047-1049 (1995).
    [CrossRef] [PubMed]
  26. M. Z. Win, R. A. Scholtz, "Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications," IEEE Trans. Commun. 48, 679-691 (2000).
    [CrossRef]
  27. E. Rothwell, D. P. Nyquist, K. M.Chen, B. Drachman, "Radar target discrimination using the extinctionpulse technique," IEEE Trans. Antennas Propag. AP-33, 929-937 (1985).
    [CrossRef]
  28. G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, F. Reichel, "A new high-resolution femtosecond pulse shaper," Appl. Phys. B 72, 627-630 (2001).
    [CrossRef]
  29. A. Monmayrant, B. Chatel, "New phase and amplitude high resolution pulse shaper," Rev. Sci. Instrum. 75, 2668-2671 (2004).
    [CrossRef]
  30. M. A. Dugan, J. X. Tull, W. S. Warren, "High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses," J. Opt. Soc. Am. B 14, 2348-2358 (1997).
    [CrossRef]

2004 Optical Fiber Conf.

S. Etemad, T. Banwell, S. Galli, J. Jackel, R. Menendez, P. Toliver, J. Young, P. Delfyett, C. Price, and T. Turpin, "Optical-CDMA incorporating phase coding of coherent frequency bins: concept, simulation, experiment," in 2004 Optical Fiber Conf. (OFC2004), FG5, Los Angeles, CA, 2004.

Appl. Phys. B

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, F. Reichel, "A new high-resolution femtosecond pulse shaper," Appl. Phys. B 72, 627-630 (2001).
[CrossRef]

Electron. Lett.

H. Sotobayashi, K. Kitayama, "325nm bandwidth supercontinuum generation at 10Gbit/s using dispersionflattened and non-decreasing normal dispersion fibre with pulse compression technique," Electron. Lett. 34, 1336-1337 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, "Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser," IEEE Photon. Technol. Lett. 14, 1608-1610 (2002).
[CrossRef]

R. P. Scott, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, S. J. B. Yoo, "Demonstration of an error-free 4x10 Gb/s multiuser SPECTS O-CDMA network testbed," IEEE Photon. Technol. Lett. 16, 2186-2188 (2004).
[CrossRef]

IEEE Trans. Antennas Propag.

E. Rothwell, D. P. Nyquist, K. M.Chen, B. Drachman, "Radar target discrimination using the extinctionpulse technique," IEEE Trans. Antennas Propag. AP-33, 929-937 (1985).
[CrossRef]

IEEE Trans. Commun.

M. Z. Win, R. A. Scholtz, "Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications," IEEE Trans. Commun. 48, 679-691 (2000).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nature

N. Dudovich, D. Oron, Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

T. C. Weinacht, J. Ahn, P. H. Bucksbaum, "Controlling the shape of a quantum wavefunction," Nature 397, 233-235 (1999).
[CrossRef]

T. Udem, R. Holzwarth, T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

T. Brixner, N. H. Damrauer, P. Niklaus, G. Gerber, "Photoselective adaptive femtosecond quantum control in the liquid phase," Nature 414, 57-60 (2001).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, S. E. Harris, "Generation of a single-cycle optical pulse," Phys. Rev. Lett. 94, 033904 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001(2004).
[CrossRef] [PubMed]

Rep. Prog. Phys.

P. Agostini, L. F. DiMauro, "The physics of attosecond light pulses," Rep. Prog. Phys. 67, 813-855 (2004)
[CrossRef]

Rev. Sci. Instrum.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

A. Monmayrant, B. Chatel, "New phase and amplitude high resolution pulse shaper," Rev. Sci. Instrum. 75, 2668-2671 (2004).
[CrossRef]

Science

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, "Chemistry - Whither the future of controlling quantum phenomena?," Science 288, 824-828 (2000).
[CrossRef] [PubMed]

R. J. Levis, G. M. Menkir, H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001)
[CrossRef] [PubMed]

P. F. Tian, D. Keusters, Y. Suzaki, W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300, 1553-1555 (2003).
[CrossRef] [PubMed]

C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnurer, C. Kan, M. Lenzner, P. Wobrauschek, F. Krausz, "Generation of coherent X-rays in the water window using 5-femtosecond laser pulses," Science 278, 661-664 (1997).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, "Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

L. S. Ma, Z. Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S. A. Diddams, "Optical frequency synthesis and comparison with uncertainty at the 10-19 level," Science 303, 1843-1845 (2004).
[CrossRef] [PubMed]

A. Marian, M. C. Stowe, J. R. Lawall, D. Felint, J. Ye, "United time-frequency spectroscopy for dynamics and global structure," Science 306, 2063-2068 (2004).
[CrossRef] [PubMed]

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, U. Keller, "Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics," Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, K. A. Nelson, "Femtosecond pulse sequences used for optical manipulation of molecular-motion," Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental apparatus for arbitrary waveform generation using line-by-line pulse shaper. The inset figure shows a measured 3 dB passband of 2.6 GHz. LCM: liquid crystal modulator. PC: polarization controller.

Fig. 2.
Fig. 2.

Selecting two spectral lines (separated by A: 10 GHz, B: 20 GHz, C: 100 GHz, E: 400 GHz and F: 500 GHz) and corresponding cosine waveforms (with periods of 100 ps, 50 ps, 10 ps, 2.5 ps and 2 ps). The inset spectra figures in Fig. (A-C) are in linear scale to show the well-controlled relative amplitudes of the two selected lines and the strong suppression of the deselected lines. Fig. (D) shows the simulation results for a distorted cosine waveform with 18 dB suppression ratio of adjacent lines due to limited pulse shaper resolution.

Fig. 3.
Fig. 3.

Selecting four spectral lines, in which two lines in each pair are separated by 10 GHz and the two inner lines between the two pairs are separated by 400 GHz. The center to center separation of the line pairs is 410 GHz. The resulting waveforms have 100 ps macro period (corresponding to 10 GHz) and 2.44 ps micro period (corresponding to 410 GHz). The red and blue waveforms are controlled to be out of phase by applying π phase shift on one pair of spectral lines, as shown in the zoomed figures.

Fig. 4.
Fig. 4.

Selecting four spectral lines (five consecutive lines with center line blocked). (B,C) Waveforms measured by intensity cross-correlation with different applied spectral phases (red and blue curves). Calculations (black circles) are essentially indistinguishable from the data, showing the high fidelity of the generated waveforms. (D,E) Waveforms are detected by a 50 GHz photo-diode and measured by sampling scope in persistent mode to demonstrate radio frequency arbitrary waveform generation (RF-AWG).

Metrics