Abstract

Filamentation formed by self-focusing of intense laser pulses propagating in air is investigated. It is found that the position of filamentation can be controlled continuously by changing the laser power and divergence angle of the laser beam. An analytical model for the process is given.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61 (2003).
    [CrossRef] [PubMed]
  2. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in air," Opt. Lett. 20, 73 (1995).
    [CrossRef] [PubMed]
  3. L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, Ch. Werner, St. Niedermeier, F. Ronneberger, H. Schillinger, R. Sauerbrey, "Femtosecond Atmospheric Lamp," Laser Optoelektron 29, 51 (1997).
  4. R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter, "Electron Acceleration by a Laser Wakefield in a Relativistically Self-Guided Channel," Phys. Rev. Lett. 78, 3125 (1997).
    [CrossRef]
  5. B. La Fontaine, , F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnson, J.-C. Kieffer, H. Pépin, and H. P. Mercure, "Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air," Phys. Plasmas 6, 1615 (1999).
    [CrossRef]
  6. M. Mlejnek, E. M. Wright, and J. V. Moloney, "Dynamic spatial replenishment of femtosecond pulses propagating in air," Opt. Lett. 23, 382 (1998).
    [CrossRef]
  7. H. Yang, J. Zhang, W. Yu, Y. J. Li, and Z. Y. Wei, "Long plasma channels generated by femtosecond laser pulses," Phys. Rev. E, 65, 016406 (2002)
    [CrossRef]
  8. H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Chen, H. Teng, Z. Y. Wei, and Z. M. Sheng, "Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air," Phys. Rev. E 66, 016406 (2002)
    [CrossRef]
  9. H. Yang, J. Zhang, J. Zhang, L. Z. Zhao, Y. J. Li, H. Teng, Y. T. Li, Z.L. Chen, Z.H. Wang, Z.Y.Wei, J.X. Ma, W. Yu, and Z. M. Sheng, "Third-order harmonic generation by self-guided femtosecond pulses in air," Phys. Rev. E 67, 015401 (2003)
    [CrossRef]
  10. V.P. Kandidov, N. Akozbek, M. Scalora, O.G. Kosareva, A.V. Nyakk, Q. Luo, S.A. Hosseini, and S.L. Chin, "Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse", Appl. Phys. B 80, 267 (2005).
    [CrossRef]
  11. S.L. Chin, S. Petit, F. Borne, and K. Miyazaki, "The White Light Supercontinuum Is Indeed an Ultrafast White Light Laser," Jpn. J. Appl. Phys. 38, L126 (1999)
    [CrossRef]
  12. J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. André, M. Franco, B. Prade, A. Mysyrowicz, S. Tzortzakis, M. Rodriguez, H. Wille and L. Wöste, "Infrared extension of the super continuum generated by femtosecond terawatt laser pulses propagating in the atmosphere," Opt. Lett. 25, 1397 (2000).
    [CrossRef]
  13. Z. Jin, J. Zhang, Y. Q. Liu, K. Li, X. H. Yuan, Z. Q. Hao, X. Lu, Y. T. Li, Z. H. Wang, W. J. Ling, Z. Y. Wei, "Coherence measurement of white light emission from fs laser propagation in air," Chin. Phys. Lett. 22, 2608 (2005)
    [CrossRef]
  14. J. Kasparian, R. Bourayou, V. Boutou1, C. Favre, G. Méjean, D. Mondelain, A. Mysyrowicz, M. Rodriguez, E. Salmon, R. Sauerbrey, H. Wille, J.P. Wolf, L. Wöste, J. Yu, L. Klingbeil, K. Rethmeier, W. Kalkner, A. Hartzes, H. Lehman, J. Eislöffel, B. Stecklum, J. Winkler, U. Laux, S. Hönger, Y. Pan, R. K. Chang, and S. C. Hill, 12th SQE, (2002).
  15. G. Méchain, C. D'Amico, Y.-B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, R. Sauerbrey, to be published in Opt. Commun.
  16. W. Yu, M. Y. Yu, J. Zhang, L. J. Qian, X. Yuan, P. X. Lu, R. X. Li, Z. M. Sheng, J. R. Liu, and Z. Z. Xu, "Long-distance propagation of intense short laser pulse in air," Phys. Plasmas 11, 5360 (2004)
    [CrossRef]

Appl. Phys. B (1)

V.P. Kandidov, N. Akozbek, M. Scalora, O.G. Kosareva, A.V. Nyakk, Q. Luo, S.A. Hosseini, and S.L. Chin, "Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse", Appl. Phys. B 80, 267 (2005).
[CrossRef]

Chin. Phys. Lett. (1)

Z. Jin, J. Zhang, Y. Q. Liu, K. Li, X. H. Yuan, Z. Q. Hao, X. Lu, Y. T. Li, Z. H. Wang, W. J. Ling, Z. Y. Wei, "Coherence measurement of white light emission from fs laser propagation in air," Chin. Phys. Lett. 22, 2608 (2005)
[CrossRef]

Jpn. J. Appl. Phys. (1)

S.L. Chin, S. Petit, F. Borne, and K. Miyazaki, "The White Light Supercontinuum Is Indeed an Ultrafast White Light Laser," Jpn. J. Appl. Phys. 38, L126 (1999)
[CrossRef]

Laser Optoelektron (1)

L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, Ch. Werner, St. Niedermeier, F. Ronneberger, H. Schillinger, R. Sauerbrey, "Femtosecond Atmospheric Lamp," Laser Optoelektron 29, 51 (1997).

Opt. Lett. (3)

Phys. Plasmas (2)

W. Yu, M. Y. Yu, J. Zhang, L. J. Qian, X. Yuan, P. X. Lu, R. X. Li, Z. M. Sheng, J. R. Liu, and Z. Z. Xu, "Long-distance propagation of intense short laser pulse in air," Phys. Plasmas 11, 5360 (2004)
[CrossRef]

B. La Fontaine, , F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnson, J.-C. Kieffer, H. Pépin, and H. P. Mercure, "Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air," Phys. Plasmas 6, 1615 (1999).
[CrossRef]

Phys. Rev. E (3)

H. Yang, J. Zhang, W. Yu, Y. J. Li, and Z. Y. Wei, "Long plasma channels generated by femtosecond laser pulses," Phys. Rev. E, 65, 016406 (2002)
[CrossRef]

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Chen, H. Teng, Z. Y. Wei, and Z. M. Sheng, "Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air," Phys. Rev. E 66, 016406 (2002)
[CrossRef]

H. Yang, J. Zhang, J. Zhang, L. Z. Zhao, Y. J. Li, H. Teng, Y. T. Li, Z.L. Chen, Z.H. Wang, Z.Y.Wei, J.X. Ma, W. Yu, and Z. M. Sheng, "Third-order harmonic generation by self-guided femtosecond pulses in air," Phys. Rev. E 67, 015401 (2003)
[CrossRef]

Phys. Rev. Lett. (1)

R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter, "Electron Acceleration by a Laser Wakefield in a Relativistically Self-Guided Channel," Phys. Rev. Lett. 78, 3125 (1997).
[CrossRef]

Science (1)

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf and L. Wöste, "White-Light Filaments for Atmospheric Analysis," Science 301, 61 (2003).
[CrossRef] [PubMed]

Other (2)

J. Kasparian, R. Bourayou, V. Boutou1, C. Favre, G. Méjean, D. Mondelain, A. Mysyrowicz, M. Rodriguez, E. Salmon, R. Sauerbrey, H. Wille, J.P. Wolf, L. Wöste, J. Yu, L. Klingbeil, K. Rethmeier, W. Kalkner, A. Hartzes, H. Lehman, J. Eislöffel, B. Stecklum, J. Winkler, U. Laux, S. Hönger, Y. Pan, R. K. Chang, and S. C. Hill, 12th SQE, (2002).

G. Méchain, C. D'Amico, Y.-B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, R. Sauerbrey, to be published in Opt. Commun.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The experimental setup. An adaptive optical system is placed after the laser compressor chamber. We use the deformable mirror to change the divergence angle of the laser beam. An imaging system was setup on a carrier.

Fig. 2.
Fig. 2.

(a) Multilayer setup of the deformable mirror. (b) Configuration of control electrodes.

Fig. 3.
Fig. 3.

Dependence of the divergence angle on the voltage applied on the deformable mirror. We obtain an adjustable divergence angle by change the voltage of the deformable mirror.

Fig. 4.
Fig. 4.

A typical evolution for a 500 GW laser beam propagating in the air. The number at the right bottom of each frame shows the position where the image was taken.

Fig. 5.
Fig. 5.

Evolution of the beam profile at different laser powers. The numbers at the bottom are the propagation distance. Different filamentation positions are obtained by changing the laser power.

Fig. 6.
Fig. 6.

Filamentation positions for different laser powers and divergence angles.

Fig. 7.
Fig. 7.

Comparison of the vertical beam profiles at a propagation distance of 183 cm and 693 cm. A 2.4 mm diameter local self-focusing was observed. The solid line in Fig. 8 shows the calculated zm when for P0=40 GW and z0=2.4 mm. The squares are the filamentation positions of the 300 GW laser at different divergences. The calculation well fits the experimental results.

Fig. 8
Fig. 8

Comparison of the calculation and experimental results. The solid line shows the calculated result for P0=40 GW and z0=2.4 mm. The squares are the measured filamentation position of a 300 GW laser beam.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z m ~ ( g b 0 + g 2 b m 2 2 α 1 ) ( g 2 + 2 α 1 b 0 2 )

Metrics