Abstract

We demonstrate transmission of audio and burst signals through a prototype THz analog communication link employing laser-gated low-temperature-grown GaAs dipole antenna as THz emitter and receiver. The transmission distance is about 100 cm. By using a direct voltage modulation format, we successfully demodulated a burst signal with a rising time of 41 μs. The corresponding modulating bandwidth achieved was 23 kHz in this first experiment. Noise analysis reveals a 10% power fluctuation in the received signal with on-off extinction ratio of greater than 1000. The transmission of a six-channel analog and burst audio signal with least distortion is also demonstrated. We further demonstrate the fidelity of the transmission of a melody through the THz link with and without any amplification.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Z. Win and R. A. Scholtz, "Impulse Radio: How it works," IEEE Commun. Lett. 2, 36-38 (1998).
    [CrossRef]
  2. S. Ramsey, E. Funk, and C. H. Lee, "A Wireless Photoconductive Receiver Using Impulse Modulation and Direct Sequence Code Division," in The Int. Topical Meeting on Microwave Photonics '99, Technical Digest, 265-268 (1999).
  3. E. Mueller and A. J. DeMaria, "Broad bandwidth communication/data links using terahertz sources and Schottky diode modulators/detectors," Proc. SPIE, 5727, 151-165 (2005).
    [CrossRef]
  4. R. Piesiewicz, J. Jemai, M. Koch and T. Kürner, "THz channel characterization for future wireless gigabit indoor communication systems," Proc. SPIE, 5727, 166-176 (2005).
    [CrossRef]
  5. T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson and M. Koch, "Audio signal transmission over THz communication channel using semiconductor modulator," Electron. Lett. 40, 124-125 (2004).
    [CrossRef]
  6. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, "Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs," Appl. Opt. 36, 7853-7859 (1997).
    [CrossRef]
  7. M. V. Exter and D. R. Grischkowsky, "Characterization of and Optoelectronic Terahertz Beam System," IEEE Trans. Microwave Theor. Tech. 38, 1684-1691 (1990).
    [CrossRef]
  8. M. Tani, K. Sakai and H. Mimura, "Ultrafast Photoconductive Detectors Based on Semi-Insulating GaAs and InP," Jpn. J. Appl. Phys. 36, L1175-L1178 (1997).
    [CrossRef]
  9. T. -A. Liu, M. Tani, M. Nakajima, M. Hangyo, K. Sakai, S. Nakashima and C. -L. Pan, "Ultrabroadband terahertz field detection by proton-bombarded InP photoconductive antennas," Opt. Express 12, 2954 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2954">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2954</a>.
    [CrossRef] [PubMed]
  10. G. -R. Lin, Y. -C. Chang, T. -A. Liu, and C. -L. Pan, "Piezoelectric-Transducer-Based Optoelectronic Frequency Synchronizer for Control of Pulse Delay in a Femtosecond Passively Mode-Locked Ti:Sapphire Laser," Appl. Opt. 42, 2843-2848 (2003).
    [CrossRef]
  11. R. A. Cheville, M. T. Reiten, R. McGowan and D. R. Grischkowsky in D. Mittleman, Ed., Sensing with Terahertz Radiation (Springer-Verlag, New York 2002), pp. 243

Appl. Opt.

Electron. Lett.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson and M. Koch, "Audio signal transmission over THz communication channel using semiconductor modulator," Electron. Lett. 40, 124-125 (2004).
[CrossRef]

IEEE Commun. Lett.

M. Z. Win and R. A. Scholtz, "Impulse Radio: How it works," IEEE Commun. Lett. 2, 36-38 (1998).
[CrossRef]

IEEE Trans. Microwave Theor. Tech.

M. V. Exter and D. R. Grischkowsky, "Characterization of and Optoelectronic Terahertz Beam System," IEEE Trans. Microwave Theor. Tech. 38, 1684-1691 (1990).
[CrossRef]

Jpn. J. Appl. Phys.

M. Tani, K. Sakai and H. Mimura, "Ultrafast Photoconductive Detectors Based on Semi-Insulating GaAs and InP," Jpn. J. Appl. Phys. 36, L1175-L1178 (1997).
[CrossRef]

Meeting on Microwave Photonics 1999

S. Ramsey, E. Funk, and C. H. Lee, "A Wireless Photoconductive Receiver Using Impulse Modulation and Direct Sequence Code Division," in The Int. Topical Meeting on Microwave Photonics '99, Technical Digest, 265-268 (1999).

Opt. Express

Proc. SPIE

E. Mueller and A. J. DeMaria, "Broad bandwidth communication/data links using terahertz sources and Schottky diode modulators/detectors," Proc. SPIE, 5727, 151-165 (2005).
[CrossRef]

R. Piesiewicz, J. Jemai, M. Koch and T. Kürner, "THz channel characterization for future wireless gigabit indoor communication systems," Proc. SPIE, 5727, 166-176 (2005).
[CrossRef]

Other

R. A. Cheville, M. T. Reiten, R. McGowan and D. R. Grischkowsky in D. Mittleman, Ed., Sensing with Terahertz Radiation (Springer-Verlag, New York 2002), pp. 243

Supplementary Material (4)

» Media 1: AVI (1165 KB)     
» Media 2: AVI (1141 KB)     
» Media 3: AVI (1157 KB)     
» Media 4: AVI (1178 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram for experimental demonstration of the THz communication link: Ti: Sapphire: mode-locked Ti: Sapphire laser; A: amplifier; PC: personal computer

Fig. 2.
Fig. 2.

(a) Time traces of the input modulation voltage and corresponding decoded signal. (b) Frequency response of the THz transmission channel.

Fig. 3.
Fig. 3.

Time traces of (a) the square-wave modulation waveform, (b) received digital signal and (c) detector noise in the absence of THz transmission

Fig. 4.
Fig. 4.

Time traces of (a) decoded audio signals at 5130 Hz (upper trace) and 513 Hz (lower trace) and (b) encoded (upper trace) and decoded 5 kbit/sec burst signal transmitted over the THz communication link.

Fig. 5.
Fig. 5.

Spectra of (a) encoded and (b) decoded six-channel voice signals transmitted over the THz communication link.

Fig. 6.
Fig. 6.

(a) The whole time sequence (left hand side) and a sample spectrum (right hand side) of a portion of the encoded music score from computer speaker; (b), (c) and (d) are the corresponding decoded audio signals from the receiving PC antenna only (b), with current preamplifier set at a gain of 5×106 V/nA (c) and 2×107 V/nA (d), respectively. [Media 1] [Media 2] [Media 3] [Media 4]

Fig. 7.
Fig. 7.

Noise spectra s detected by the receiving THz PC antenna only (a), with current preamplifier set at a gain of 5×106 V/nA (b) and 2×107 V/nA (c), respectively.

Metrics