Abstract

The purely refractive index driven separation of uniformly sized polystyrene, n = 1.59 and poly(methylmethacrylate), n = 1.49 in an optical chromatography system has been enhanced through the incorporation of a custom poly(dimethysiloxane) (PDMS) microfluidic system. A customized channel geometry was used to create separate regions with different linear flow velocities tailored to the specific application. These separate flow regions were then used to expose the entities in the separation to different linear flow velocities thus enhancing their separation relative to the same separation in a constant velocity flow environment. A microbiological sample containing spores of the biological warfare agent, Bacillus anthracis, and a common environmental interferent, mulberry pollen, was investigated to test the use of tailored velocity regions. These very different samples were analyzed simultaneously only through the use of tailored velocity regions.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin, "History of optical trapping and manipulation of small-neutral particle, atoms, and molecules," IEEE J. Sel. Top. Quantum Electron. 6, 841-856 (2000).
    [CrossRef]
  2. A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  3. H. Melville; G. F. Milne; G. C. Spalding; W. Sibbett; K. Dholakia; D. McGloin, "Optical trapping of three-dimensional structures using dynamic holograms," Opt. Express 11, 3562-3567 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562</a>
    [CrossRef] [PubMed]
  4. C. Mio; T. Gong; A. Terray; D. W. M. Marr, "Design of a scanning laser optical trap for multiparticle manipulation," Rev. Sci. Instrum. 71, 2196-2200 (2000).
    [CrossRef]
  5. N. Kitamura; F. Kitagawa, "Optical trapping - chemical analysis of single microparticles in solution," J. Photochem. Photobiol. C 4, 227-247 (2003).
    [CrossRef]
  6. T. E. Bridges; M. P. Houlne; J. M. Harris, "Spatially resolved analysis of small particles by confocal Raman microscopy: Depth profiling and optical trapping," Anal. Chem. 76, 576-584 (2004).
    [CrossRef] [PubMed]
  7. J. Plewa; E. Tanner; D. M. Mueth; D. G. Grier, "Processing carbon nanotubes with holographic optical tweezers," Opt. Express 12, 1978-1981 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1978">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1978</a>
    [CrossRef] [PubMed]
  8. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  9. A. Terray; J. Oakey; D. W. M. Marr, "Fabrication of linear colloidal structures for microfluidic applications," Appl. Phys. Lett. 81, 1555-1557 (2002).
    [CrossRef]
  10. P. A. Prentice; M. P. MacDonald; T. G. Frank; A. Cuschieri; G. C. Spalding; W. Sibbett; P. A. Campbell; K. Dholakia, "Manipulation and filtration of low index particles with holographic Laguerre-Gaussian optical trap arrays," Opt. Express 12, 593-600 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-593">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-593</a>
    [CrossRef] [PubMed]
  11. S. C. Jakeway; A. J. de Mello; E. L. Russell, "Miniaturized total analysis systems for biological analysis," Fresenius' J. Anal. Chem. 366, 525-539 (2000).
    [CrossRef]
  12. D. J. Beebe; G. A. Mensing; G. M. Walker, "Physics and applications of microfluidics in biology," Annu. Rev. Biomed. Eng. 4, 261-286 (2002).
    [CrossRef] [PubMed]
  13. C. Jensen-McMullin; A. Au; J. Quinsaat; E. R. Lyons; H. P. Lee, "Fiber-optic-based optical trapping and detection for lab-on-a-chip (LOC) applications," Proc. SPIE - Int. Soc. Opt. Eng. (USA) 4622, 188-194 (2002).
  14. A. D. Mehta; M. Rief; J. A. Spudich; D. A. Smith; R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
    [CrossRef] [PubMed]
  15. Y. J. Liu; C. B. Rauch; R. L. Stevens; R. Lenigk; J. N. Yang; D. B. Rhine; P. Grodzinski, "DNA amplification and hybridization assays in integrated plastic monolithic devices," Anal. Chem. 74, 3063-3070 (2002).
    [CrossRef] [PubMed]
  16. C. Hansen; S. R. Quake, "Microfluidics in structural biology: smaller, faster... better," Curr. Opin. Struct. Biol. 13, 538-544 (2003).
    [CrossRef] [PubMed]
  17. T. Kaneta; Y. Ishidzu; N. Mishima; T. Imasaka, "Theory of optical chromatography," Anal. Chem. 69, 2701-2710 (1997).
    [CrossRef] [PubMed]
  18. T. Imasaka; Y. Kawabata; T. Kaneta; Y. Ishidzu, "Optical Chromatography," Anal. Chem. 67, 1763-1765 (1995).
    [CrossRef]
  19. T. Imasaka, "Optical chromatography. A new tool for separation of particles," Analusis 26, M53-M55 (1998).
    [CrossRef]
  20. S. J. Hart; A. V. Terray, "Refractive-index-driven separation of colloidal polymer particles using optical chromatography," Appl. Phys. Lett. 83, 5316-5318 (2003).
    [CrossRef]
  21. D. C. Duffy; J. C. McDonald; O. J. A. Schueller; G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," Anal. Chem. 70, 4974-4984 (1998).
    [CrossRef] [PubMed]
  22. C. H. Lin; G. B. Lee; B. W. Chang; G. L. Chang, "A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist," J. Micromech. Microeng. 12, 590-597 (2002).
    [CrossRef]
  23. J. C. McDonald; G. M. Whitesides, "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices," Acc. Chem. Res. 35, 491-499 (2002).
    [CrossRef] [PubMed]

Acc. Chem. Res. (1)

J. C. McDonald; G. M. Whitesides, "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices," Acc. Chem. Res. 35, 491-499 (2002).
[CrossRef] [PubMed]

Anal. Chem. (5)

Y. J. Liu; C. B. Rauch; R. L. Stevens; R. Lenigk; J. N. Yang; D. B. Rhine; P. Grodzinski, "DNA amplification and hybridization assays in integrated plastic monolithic devices," Anal. Chem. 74, 3063-3070 (2002).
[CrossRef] [PubMed]

D. C. Duffy; J. C. McDonald; O. J. A. Schueller; G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," Anal. Chem. 70, 4974-4984 (1998).
[CrossRef] [PubMed]

T. E. Bridges; M. P. Houlne; J. M. Harris, "Spatially resolved analysis of small particles by confocal Raman microscopy: Depth profiling and optical trapping," Anal. Chem. 76, 576-584 (2004).
[CrossRef] [PubMed]

T. Kaneta; Y. Ishidzu; N. Mishima; T. Imasaka, "Theory of optical chromatography," Anal. Chem. 69, 2701-2710 (1997).
[CrossRef] [PubMed]

T. Imasaka; Y. Kawabata; T. Kaneta; Y. Ishidzu, "Optical Chromatography," Anal. Chem. 67, 1763-1765 (1995).
[CrossRef]

Analusis (1)

T. Imasaka, "Optical chromatography. A new tool for separation of particles," Analusis 26, M53-M55 (1998).
[CrossRef]

Annu. Rev. Biomed. Eng. (1)

D. J. Beebe; G. A. Mensing; G. M. Walker, "Physics and applications of microfluidics in biology," Annu. Rev. Biomed. Eng. 4, 261-286 (2002).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

A. Terray; J. Oakey; D. W. M. Marr, "Fabrication of linear colloidal structures for microfluidic applications," Appl. Phys. Lett. 81, 1555-1557 (2002).
[CrossRef]

S. J. Hart; A. V. Terray, "Refractive-index-driven separation of colloidal polymer particles using optical chromatography," Appl. Phys. Lett. 83, 5316-5318 (2003).
[CrossRef]

Curr. Opin. Struct. Biol. (1)

C. Hansen; S. R. Quake, "Microfluidics in structural biology: smaller, faster... better," Curr. Opin. Struct. Biol. 13, 538-544 (2003).
[CrossRef] [PubMed]

Fresenius' J. Anal. Chem. (1)

S. C. Jakeway; A. J. de Mello; E. L. Russell, "Miniaturized total analysis systems for biological analysis," Fresenius' J. Anal. Chem. 366, 525-539 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Ashkin, "History of optical trapping and manipulation of small-neutral particle, atoms, and molecules," IEEE J. Sel. Top. Quantum Electron. 6, 841-856 (2000).
[CrossRef]

J. Micromech. Microeng. (1)

C. H. Lin; G. B. Lee; B. W. Chang; G. L. Chang, "A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist," J. Micromech. Microeng. 12, 590-597 (2002).
[CrossRef]

J. Photochem. Photobiol. C (1)

N. Kitamura; F. Kitagawa, "Optical trapping - chemical analysis of single microparticles in solution," J. Photochem. Photobiol. C 4, 227-247 (2003).
[CrossRef]

Nature (1)

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. Lett. (1)

A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Proc. SPIE (1)

C. Jensen-McMullin; A. Au; J. Quinsaat; E. R. Lyons; H. P. Lee, "Fiber-optic-based optical trapping and detection for lab-on-a-chip (LOC) applications," Proc. SPIE - Int. Soc. Opt. Eng. (USA) 4622, 188-194 (2002).

Rev. Sci. Instrum. (1)

C. Mio; T. Gong; A. Terray; D. W. M. Marr, "Design of a scanning laser optical trap for multiparticle manipulation," Rev. Sci. Instrum. 71, 2196-2200 (2000).
[CrossRef]

Science (1)

A. D. Mehta; M. Rief; J. A. Spudich; D. A. Smith; R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
[CrossRef] [PubMed]

Supplementary Material (3)

» Media 1: MOV (1609 KB)     
» Media 2: MOV (1197 KB)     
» Media 3: MOV (2481 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Drawing of optical chromatography system. Aligned laser and microfluidic channel system with attached fluid connections is placed underneath the microscope. System can be translated in the X, Y and Z directions.

Fig. 2.
Fig. 2.

Drawing of microfluidic system (a) including a polycarbonate flow introduction base for fluid connections, a PDMS channel network and a glass cover slip. The subset image (b) shows the injection region with an illustration of a laser focused into the system.

Fig. 3.
Fig. 3.

(1.57 MB) Movie of the tracer particle traveling through the wide (800 μm) and narrow (500 μm) regions of the ripple flow channel.

Fig. 4.
Fig. 4.

Linear velocity of a tracer particle traveling in a rippled channel geometry over time.

Fig. 5.
Fig. 5.

Images of the PS and PMMA separation experiments run in three different channels. The first channel width (a) increases from 500 μm to 630 μm, the second (b) to 750 μm and the third (c) to 870 μm. The white circles are meant to aid in the location of the upper PS and lower PMMA particle. The laser beam was propagating from left to right in the channel.

Fig. 6.
Fig. 6.

(2.42 MB) Video of 2.2 μm PS and PMMA particles being translated through a rippled flowcell by moving the focal point with a linear translator. The ripples were 800 μm at the widest points and 500 μm at the narrow points.

Fig. 7.
Fig. 7.

(1.16 MB) Movie of Bacillus anthracis (B.a.) Sterne strain spores separated from a Mulberry pollen particle in a tailored velocity flowcell. The laser (690 mW at 515 nm) was propagating from left to right and the flow (linear velocity = 97 μm/s and 182 μm/s for B. a. and pollen respecitvely) traveling from right to left. Channel taper dimensions: 400 μm widening to 750 μm over 1500 μm.

Tables (1)

Tables Icon

Table 1. Separation distances between PMMA and PS particles in straight and enhanced channel widths. Letters a, b, and c refer to the images in Fig. 5.

Metrics