Abstract

Three Monte Carlo programs were developed which keep track of the status of polarization of light traveling through mono-disperse solutions of micro-spheres. These programs were described in detail in our previous article [1]. This paper illustrates a series of Monte Carlo simulations that model common experiments of light transmission and reflection of scattering media. Furthermore the codes were expanded to model light propagating through poly-disperse solutions of micro-spheres of different radii distributions.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. J.C. Ramella-Roman, S.A.Prahl, S.L. Jacques, "Three Monte Carlo programs of polarized light transport into scattering media: part I," Opt. Express 13, 4420-4438, (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4420">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4420</a>
    [CrossRef]
  2. S. Bartel and A. H. Hielscher, "Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media," Appl. Opt. 39, 1580-1588, (2000).
  3. B. D. Cameron, M. J. Rakovic , M. Mehrubeoglu , G. W. Kattawar , S. Rastegar , L. V. Wang , and G. Cote, "Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium," Opt. Lett. 23, 485-487, 1998.
  4. M. J. Rakovic, G. W. Kattawar, M. Mehrubeoglu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Cote, "Light backscattering polarization patterns from turbid media: theory and experiment," Appl. Opt. 38, 3399-3408, (1999).
  5. Daniel Côté and I. Alex Vitkin, "Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations," Opt. Express 13, 148-163, 2005 <a"http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-148">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-148</a>
    [CrossRef]
  6. M. Mehrubeoglu, N. Kehtarnavaz, S. Rastegar, and L. V. Wang, "Effect of molecular concentrations in tissue simulating phantoms on images obtained using diffuse reflectance polarimetry," Opt. Express 3, 286-297, (1998). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-7-286">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-7-286</a>
  7. M. Xu, "Electric field Monte Carlo simulation of polarized light propagation in turbid media", Opt. Express 26, 6530-6539, (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6530">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6530</a>
  8. K.F. Evans and G.L. Stephens, "A new polarized atmospheric radiative transfer model," J.Quant.Spectrosc. Radiat. Transfer. 46, 413-423, (1991).
    [CrossRef]
  9. S. L. Jacques, R. J. Roman, K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129, (2000).
    [CrossRef]
  10. G. Yao, L-H. Wang, "Two-dimensional depth-resolved Muller matrix characterization of biological tissue by optical coherence tomography," Opt. Letters 24, 537-539, (1999).
  11. R. J. Allen and M. R. Platt, "Lidar for multiple backscattering and depolarization observations," Appl. Opt. 16; 3193-3199, (1977).
  12. G. Zaccanti, P. Bruscaglioni, M. Gurioli and P. Sansoni, "Laboratory simulations of lidar returns from clouds: experimental and numerical results," Appl. Opt. 32, 1590-1597, (1993).
  13. P. Bruscaglioni, G. Zaccanti, Q. Wei, "Transmission of a pulsed polarized light beam through a thick turbid media: numerical results," Appl. Opt. 32, 6142-6150, (1993).
  14. J. He, A Karlsson, J. Swartling, S. Anderson-Engles, "Light scattering by multiple red blood cells," J. Opt. Soc. Am. A. 21, 1953-1961, (2004).
  15. S. V. Tsinopoulos, E. J. Sellountos, D. Polyzos "Light scattering by aggregated red blood cells," Appl. Opt. 41, 1408-1417, (2002).
  16. L. Whang, S.L. Jacques, amd L. Zheng, "MCML- Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146, (1995).
    [CrossRef]
  17. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, the art of Scientific Computing, (Cambridge University Press, 1992).
  18. The experimental data gently provided by Dr. Cameron.

Appl. Opt. (6)

Comput. Methods Programs Biomed. (1)

L. Whang, S.L. Jacques, amd L. Zheng, "MCML- Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146, (1995).
[CrossRef]

J. Opt. Soc. Am. A. (1)

J. He, A Karlsson, J. Swartling, S. Anderson-Engles, "Light scattering by multiple red blood cells," J. Opt. Soc. Am. A. 21, 1953-1961, (2004).

J.Quant.Spectrosc. Radiat. Transfer. (1)

K.F. Evans and G.L. Stephens, "A new polarized atmospheric radiative transfer model," J.Quant.Spectrosc. Radiat. Transfer. 46, 413-423, (1991).
[CrossRef]

Lasers Surg. Med. (1)

S. L. Jacques, R. J. Roman, K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129, (2000).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Letters (1)

G. Yao, L-H. Wang, "Two-dimensional depth-resolved Muller matrix characterization of biological tissue by optical coherence tomography," Opt. Letters 24, 537-539, (1999).

Other (2)

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, the art of Scientific Computing, (Cambridge University Press, 1992).

The experimental data gently provided by Dr. Cameron.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics