P. Yang, K.N. Liou, M.I. Mishchenko, and B.-C. Gao, "Efficient finite-difference time-domain scheme for light scattering by dielectric particles: application to aerosols," Appl. Opt. 39, 3727-3737 (2000).

W. Sun, and Q. Fu "Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices," Appl. Opt. 39, 5569 (2000).

P. Yang, G.W. Kattawar, K.-N. Liou, and J.Q. Lu, "Comparison of Cartesian grid configurations for application of the finite-difference time-domain method to electromagnetic scattering by dielectric particles," Appl. Opt. 43, 4611-4624 (2004).

[CrossRef]

V. Shankar, A. Mohammadian, andW.F. Hall, "A Time-Domain Finite-Volume Treatment for the Maxwell Equations," Electromagnetics 10, 127-145 (1990).

N.K. Madsen, and R.W. Ziolkowski, "A Three-Dimensional Modified Finite Volume Technique for Maxwell's Equations," Electromagnetics 10, 147-161 (1990).

C.J. Railton, I.J. Craddock, and J.B. Schneider, "Improved locally distorted CPFDTD algorithm with provable stability," Electron. Lett. 31, 1585-1586 (1995).

[CrossRef]

Proceedings of the Fifth International Symposium on Photonic and Electromagnetic Crystal Structures (PECSV) (Kyoto, Japan, March 7-11, 2004); H. Benisty, S. Kawakami, D.J. Norris, and C.M. Soukoulis, eds, Phot. Nanostructures Fund. Appl. 2, 57-159 (2004); C. Jagadish, D.G. Deppe, S. Noda, T.F. Krauss, and O.J. Painter, eds, IEEE J. Sel. Top. Area Commun. 23, 1305-1423 (2005).

T. Hirono, Y. Shibata, W.W. Lui, S. Seki, and Y. Yoshikuni, "The Second-Order Condition for the Dielectric Interface Orthogonal to the Yee-Lattice Axis in the FDTD Scheme," IEEE Microwave Guided Wave Lett. 10, 359-361 (2000).

[CrossRef]

K.-P. Hwang, and A.C. Cangellaris, "Effective Permittivities for Second-Order Accurate FDTD Equations at Dielectric Interfaces," IEEE Microwave Wireless Comp. Lett. 11, 158-160 (2001).

[CrossRef]

M. Fujii, D. Lukashevich, I. Sakagami, and P. Russer, "Convergence of FDTD andWavelet-Collocation Modeling of Curved Dielectric Interface with the Effective Dielectric Constant Technique," IEEE Microwave Wireless Comp. Lett. 13, 469-471 (2003).

[CrossRef]

W. Yu, and R. Mittra, "A Conformal Finite Difference Time Domain Technique for Modeling Curved Dielectric Surfaces," IEEE Microwave Wireless Comp. Lett. 11, 25-27 (2001).

[CrossRef]

T. Xiao, and Q.H. Liu, "A Staggered Upwind Embedded Boundary (SUEB) Method to Eliminate the FDTD Staircasing Error," IEEE Trans. Antennas Propag. 52, 730-740 (2004).

[CrossRef]

M. Fusco, "FDTD Algorithm in Curvilinear Coordinates," IEEE Trans. Antennas Propag. 38, 76-89 (1990).

[CrossRef]

K.L. Shlager, J.B. Schneider, "Comparison of the Dispersion Properties of Several Low-Dispersion Finite- Difference Time-Domain Algorithms," IEEE Trans. Antennas Propag. 51, 642-652 (2003).

[CrossRef]

J.G. Maloney, and G.S. Smith, "The Efficient Modeling of Thin Material Sheets in the Finite-Difference Time- Domain (FDTD) Method," IEEE Trans. Antennas Propag. 40, 323-330 (1992).

[CrossRef]

J. Nadobny, D. Sullivan, W. Wlodarczyk, P. Deuflhard, and P. Wust, "A 3-D Tensor FDTD-Formulation for Treatment of Slopes Interfaces in Electrically Inhomogeneous Media," IEEE Trans. Antennas Propag. 51, 1760- 1770 (2003).

[CrossRef]

K.H. Dridi, J.S. Hesthaven, and A. Ditkowski, "Staircase-Free Finite-Difference Time-Domain Formulation for General Materials in Complex Geometries," IEEE Trans. Antennas Propag. 49, 749-756 (2001).

[CrossRef]

K.S. Yee, "Numerical Solution of Initial Boundary Value Problems involving Maxwell's Equations in Isotropic Media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).

[CrossRef]

T.G. Jurgens, A. Taflove, K. Umashankar, and T.G. Moore, "Finite-Difference Time-Domain Modeling of Curved Surfaces," IEEE Trans. Antennas Propag. 40, 357-365 (1992).

[CrossRef]

T.G. Jurgens, and A. Taflove, "Three-Dimensional Contour FDTD Modeling of Scattering from Single and Multiple Bodies," IEEE Trans. Antennas Propag. 41, 1703-1708 (1993).

[CrossRef]

P.H. Harms, J.-F. Lee, and R. Mittra, "A Study of the Nonorthogonal FDTD Method Versus the Conventional FDTD Technique for Computing Resonant Frequencies of Cylindrical Cavities," IEEE Trans. Microwave Theory Tech. 40, 741-476 (1992).

Y. Hao, and C.J. Railton, "Analyzing Electromagnetic Structures with Curved Boundaries on Cartesian FDTD Meshes," IEEE Trans. Microwave Theory Tech. 46, 82-88 (1998).

T.I. Kosmanis, and T.D. Tsiboukis, "A Systematic and Topologically Stable Conformal Finite-Difference Time- Domain Algorithm for Modeling Curved Dielectric Interfaces in Three Dimensions," IEEE Trans. Microwave Theory Tech. 51, 839-847 (2003).

I.S. Kim, and W.J.R. Hoefer, "A Local Mesh Refinement Algorithm for the Time Domain-Finite Difference Method Using Maxwell's Curl Equations," IEEE Trans. Microwave Theory Tech. 38, 812-815 (1990).

S.S. Zivanovic, K.S. Yee, and K.K. Mei, "A Subgridding Method for the Time-Domain Finite-Difference Method to Solve Maxwell's Equations," IEEE Trans. Microwave Theory Tech. 39, 471-479 (1991).

N. Kaneda, B. Houshmand, and T. Itoh, "FDTD Analysis of Dielectric Resonators with Curved Surfaces," IEEE Trans. Microwave Theory Tech. 45, 1645-1649 (1997).

S. Dey, and R. Mittra, "A Conformal Finite-Difference Time-Domain Technique for Modeling Cylindrical Dielectric Resonators," IEEE Trans. Microwave Theory Tech. 47, 1737-1739 (1999).

R. Holland, "Finite-Difference Solution of Maxwell's Equations in Generalized Nonorthogonal Coordinates," IEEE Trans. Nucl. Sci. NS-30, 4589-4591 (1983).

A. Ditkowski, K. Dridi, and J.S. Hesthaven, "Convergent Cartesian Grid Methods for Maxwell's Equations in Complex Geometries," J. Comp. Phys. 170, 39-80 (2001).

Special issue on nanostructured optical meta-materials: beyond photonic band gap effects, N. Zheludev, and V. Shalaev, eds., J. Opt. A: Pure and Applied Optics, 7, S1-S254 (2005).

W. Yu, and R. Mittra, "On the modeling of periodic structures using the finite-difference time-domain algorithm," Microw. Opt. Technol. Lett. 24, 151-155 (2000).

[CrossRef]

J.-Y. Lee, and N.-H. Myung, "Locally tensor conformal FDTD method for modeling arbitrary dielectric surfaces," Microw. Opt. Technol. Lett. 23, 245-249 (1999).

[CrossRef]

J.A. Roden, and S.D. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFSPML for arbitrary media," Microw. Opt. Technol. Lett. 27, 334-339 (2000).

[CrossRef]

A. Kirchner, K. Busch, and C.M. Soukoulis, "Transport properties of random arrays of dielectric cylinders," Phys. Rev. B 57, 277-288 (1998).

[CrossRef]

A. Bossavit, "Generalized finite differences in computational electromagnetics," Progress in Electromagnetic Research, PIER 32, 45-64 (2001).

K.K. Mei, A. Cangellaris, and D.J. Angelakos, "Conformal Time Domain Finite-Difference Method," Radio Sci. 19, 1145-1147 (1984).

A. Taflove, and S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 2005).

Proceedings of the EOS Topical Meeting on Advanced Optical Imaging Techniques, (London, UK, June 29 - July 1, 2005).

M.V.K. Chari, and S.J. Salon, Numerical methods in electromagnetism (Academic Press, San Diego, CA, 2000)

C.F. Bohren, and D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1983).