Abstract

We propose and demonstrate a novel all-optical digital-to-analog (D/A) conversion using pulse pattern recognition based on optical correlation processing. It is composed of pulse pattern recognition based on correlation processing and intensity adjustment using an optical attenuator. We obtain a single pulse as a result of pulse pattern recognition by using correlation processing between a target digital signal and a prepared correlation filter function. The obtained single pulse can be promptly fed to an output port as a corresponding analog signal through adequate intensity adjustment. Experimental results show that four-bit digital signals with 1.65ps interval can be successfully converted to analog signals corresponding to input digital signals.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. L. Shoop: Photonic Analog-to-Digital Conversion (Springer-Verlag, Berlin, 2001).
  2. P. P. Ho, Q. Z. Wang, J. Chen, Q. D. Liu and R. R. Alfano, "Ultrafast optical pulse digitization with unary spectrally encoded cross-phase modulation," Appl. Opt. 15, 3425-3429 (1997).
    [CrossRef]
  3. L. Brzozowski and E. H. Sargent, "All-optical Analog-to-Digital Converters,Hardlimiters and Logic Gates," J. Lightwave Technol. 19, 114-119 (2001).
    [CrossRef]
  4. F. Coppinger, A. S. Bhushan and B. Jalali, "Photonic time stretch and its application to analog-to-digital conversion," IEEE Trans. Microwave Theory Tech. 47, 1309-1314 (1999).
    [CrossRef]
  5. T. R. Clark, J. U. Kang, and R. D. Esman, "Performance of a time- and wavelength-interleaved photonic sampler for analog-digital conversion," IEEE Photonics Technol. Lett. 11, 1168-1170 (1999).
    [CrossRef]
  6. T. Konishi, K. Tanimura, K. Asano, Y. Oshita and Y. Ichioka, "All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique," J. Opt. Soc. Am. B 11, 2817-2823 (2002).
    [CrossRef]
  7. K. Ikeda, J. M. Abdul, S. Namiki, and K. Kitayama, "Optical quantizing and coding for ultrafast A/D conversion using nonlinear fiber-optic switches based on Sagnac interferometer," Opt. Express 13, 4296-4302 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4296">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4296</a>
    [CrossRef] [PubMed]
  8. S. Oda and A. Maruta, "2-bit all-optical analog-to-digital conversion by slicing supercontinuum spectrum and switching with nonlinear optical loop mirror and its application to quaternary ASK-to-OOK modulation format converter," IEICE Trans. Commun. E88-B, 1963-1969 (2005)
    [CrossRef]
  9. T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata and A. Sugita, "Integrated optical digital-to-analogue converter and its application to pulse pattern recognition," Electron. Lett. 37, 1237-1238 (2001).
    [CrossRef]
  10. A. Yacoubian and P. K. Das, "Digital-to-Analog Conversion Using Electrooptic Modulators," IEEE Photon. Technol. Lett. 15, 117-119 (2003).
    [CrossRef]
  11. H. Furukawa, T. Konishi, Y. Oshita,W. Yu, K. Itoh, and Y. Ichioka, "Design of header recognition filter for binary phase shift keying in header recognition unit using time-space conversion," Opt. Rev. 11, 119-125 (2004).
    [CrossRef]
  12. M. Taniguchi, K. Matsuoka and Y. Ichioka, "Computer generated multiple-object discriminant correlation filters: design by simulated annealing," Appl. Opt. 34, 1379-1385 (1995).
    [CrossRef] [PubMed]
  13. K. G. Purchase, D. J. Brady, and K. Wagner, "Time-of-flight cross correlation on a detector array for ultrafast packet detection," Opt. Lett., 18, 2129-2131 (1993).
    [CrossRef] [PubMed]
  14. J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro and D. J. Richardson, "A holy fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement," IEEE Photon. Tech. Lett. 14, 876-878 (2002).
    [CrossRef]

Appl. Opt. (2)

P. P. Ho, Q. Z. Wang, J. Chen, Q. D. Liu and R. R. Alfano, "Ultrafast optical pulse digitization with unary spectrally encoded cross-phase modulation," Appl. Opt. 15, 3425-3429 (1997).
[CrossRef]

M. Taniguchi, K. Matsuoka and Y. Ichioka, "Computer generated multiple-object discriminant correlation filters: design by simulated annealing," Appl. Opt. 34, 1379-1385 (1995).
[CrossRef] [PubMed]

Electron. Lett. (1)

T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata and A. Sugita, "Integrated optical digital-to-analogue converter and its application to pulse pattern recognition," Electron. Lett. 37, 1237-1238 (2001).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro and D. J. Richardson, "A holy fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement," IEEE Photon. Tech. Lett. 14, 876-878 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Yacoubian and P. K. Das, "Digital-to-Analog Conversion Using Electrooptic Modulators," IEEE Photon. Technol. Lett. 15, 117-119 (2003).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

T. R. Clark, J. U. Kang, and R. D. Esman, "Performance of a time- and wavelength-interleaved photonic sampler for analog-digital conversion," IEEE Photonics Technol. Lett. 11, 1168-1170 (1999).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

F. Coppinger, A. S. Bhushan and B. Jalali, "Photonic time stretch and its application to analog-to-digital conversion," IEEE Trans. Microwave Theory Tech. 47, 1309-1314 (1999).
[CrossRef]

IEICE Trans. Commun. (1)

S. Oda and A. Maruta, "2-bit all-optical analog-to-digital conversion by slicing supercontinuum spectrum and switching with nonlinear optical loop mirror and its application to quaternary ASK-to-OOK modulation format converter," IEICE Trans. Commun. E88-B, 1963-1969 (2005)
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

T. Konishi, K. Tanimura, K. Asano, Y. Oshita and Y. Ichioka, "All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique," J. Opt. Soc. Am. B 11, 2817-2823 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Rev. (1)

H. Furukawa, T. Konishi, Y. Oshita,W. Yu, K. Itoh, and Y. Ichioka, "Design of header recognition filter for binary phase shift keying in header recognition unit using time-space conversion," Opt. Rev. 11, 119-125 (2004).
[CrossRef]

Other (1)

B. L. Shoop: Photonic Analog-to-Digital Conversion (Springer-Verlag, Berlin, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed all-optical D/A conversion

Fig. 2.
Fig. 2.

Simulation result of the maximum intensity of a correlation signal of each four-bit digital signal in case of using the designed correlation filter and the matched filter to recognize a digital signal [0001].

Fig. 3.
Fig. 3.

Simulation result of the maximum intensity ratio of a correlation signal of a target digital signal to those of nontarget digital signals in case of each target digital signal.

Fig. 4.
Fig. 4.

Experimental set up of the proposed all-optical D/A conversion, G : Grating, M : Mirror, BS : Beam splitter, CL2, 5, 8 : 200 mm focal length cylindrical lens, CL1, 3, 4, 6 : 100 mm focal length cylindrical lens, CL7 : 40 mm focal length cylindrical lens, POL : Polarizer.

Fig. 5.
Fig. 5.

Experimental result of the maximum intensity of a correlation signal of each four-bit digital signal in case of using the designed correlation filter to recognize a digital signal [0001].

Fig. 6.
Fig. 6.

Experimental result of the maximum intensity ratio of a correlation signal of a target digital signal to those of nontarget ones in case of each target digital signal.

Fig. 7.
Fig. 7.

Experimental result of the output analog signal in case of each input digital signal : (a) [0001], (b) [0011], (c) [0101], (d) [0111], (e) [1001], (f) [1011], (g) [1101], (h) [1111].

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

h i ( t ) = k = 1 N c k δ { t ( k 1 ) τ } c k = { 1 for a mark 0 for a space
c i ( t ) = + h i ( t ) f ( t τ ) d t
= + [ k = 1 N c k exp { ( k 1 ) τ } ] F ( ω ) exp ( jωt ) d ω

Metrics