Abstract

We report a novel micro-optical waveguide (MOW) on micro-actuating platform (MAP) light modulator for Q-switched all-fiber laser applications. The light modulator employs a fused biconical taper (FBT) coupler, which acts as MOW, mounted on an electromechanical system, MAP, where an axial stress over the waist of FBT coupler is precisely controlled to result in modulation of output power. The modulator was implemented in a clad pumped Yb3+-doped fiber laser cavity as a Q-switching element. Q-switching was successfully achieved at the repetition rate of 18.6kHz and average pulse energy of 1.4μJ. The proposed structure can be readily applied in power scaling up of all-fiber Q-switching laser systems.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, "Enhanced Q-switching in double-clad fiber lasers," Opt. Lett., 23, 454-456 (1998).
    [CrossRef]
  2. C-P. Amado, J. F. D. Michel, and J. S. Herbert, "Miniature CW and active interally Q-switched Nd:MgO:LiNbO3 lasers," J. Quantum Electron., QE-23, 262-266 (1987).
  3. J. Popp, M. H. Fields, and R. K. Chang, "Q switching by saturable absorption in microdroplets: elastic scattering and laser emission," Opt. Lett., 22, 1296-1298 (1997).
    [CrossRef]
  4. D-W. Huang, W-F. Liu, and C. C. Yang, "Q-switched all-fiber laser with an acoustically modulated fiber attenuator," IEEE Photonics Technol. Lett., 12, 1153-1135 (2000).
    [CrossRef]
  5. H. Cai, X. Jiangzhen, H. Zhao, C. Gaoting, and F. Zujie, "All-fiber Q-switched Erbium laser using a fiber bragg grating placed in loop mirror as a wavelength-selective intensity modulator," Opt. Fiber Conf., ThGG31, 654-655 (2002).
  6. P. Perez-Millan, A. Diez, M. V. Andres, D. Zalvidea, and R. Duchowicz, "Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating," Opt. Express, 13, 5046-5051 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-5046.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-5046.</a>
    [CrossRef] [PubMed]
  7. W. Shin, S. W. Han, C. S. Park, and K. Oh, "All fiber optical inter-band router for broadband wavelength division multiplexing," Opt. Express, 12, 1815-1822 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1815.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1815.</a>
    [CrossRef] [PubMed]
  8. W. Shin, K. Oh, "Novel micro-optical waveguide on micro-actuating platform for reconfigurable wavelength selective optical switch," Opt. Express, 12, 4378-1389 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4378.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4378.</a>
    [CrossRef] [PubMed]
  9. K. Oh, W. Shin, Y. S. Jeong, and Jhang W. Lee, "Development of micro-optical waveguide on microactuating platform technologies for reconfigurable optical networking," J. Lightwave Technol., 23, 533-542 (2005).
    [CrossRef]
  10. F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, "Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure," J. Lightwave Technol., 6, 1476-1482 (1988).
    [CrossRef]
  11. W. Snyder, J. D. Love, in Optical Waveguide Theory, (London: Chapman & Hall, 1983
  12. M. Born, E. Wolf, in Principles of Optics, (New York: Macmillan, 1964).
  13. Y. Hibino, F. Hanawa, T. Abe, and S. Shibata, "Residual stress effects on refractive indices in undoped silica-core single-mode fibers," Appl. Phys. Lett., 50, 1565-1566 (1987).
    [CrossRef]
  14. G. W. Scherer, "Stress-induced index profile distortion in optical waveguides," Appl. Opt., 19, 2000-2006 (1980).
    [CrossRef] [PubMed]
  15. E. Suhir, "Predicted stresses and strains in fused biconical taper couplers subjected to tension," Appl. Opt., 32, 3237-3240 (1993).
    [CrossRef] [PubMed]
  16. A. E. Siegman, in Lasers, (Oxford: Oxford University, 1086).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. Hibino, F. Hanawa, T. Abe, and S. Shibata, "Residual stress effects on refractive indices in undoped silica-core single-mode fibers," Appl. Phys. Lett., 50, 1565-1566 (1987).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

D-W. Huang, W-F. Liu, and C. C. Yang, "Q-switched all-fiber laser with an acoustically modulated fiber attenuator," IEEE Photonics Technol. Lett., 12, 1153-1135 (2000).
[CrossRef]

J. Lightwave Technol. (2)

K. Oh, W. Shin, Y. S. Jeong, and Jhang W. Lee, "Development of micro-optical waveguide on microactuating platform technologies for reconfigurable optical networking," J. Lightwave Technol., 23, 533-542 (2005).
[CrossRef]

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, "Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure," J. Lightwave Technol., 6, 1476-1482 (1988).
[CrossRef]

J. Quantum Electron. (1)

C-P. Amado, J. F. D. Michel, and J. S. Herbert, "Miniature CW and active interally Q-switched Nd:MgO:LiNbO3 lasers," J. Quantum Electron., QE-23, 262-266 (1987).

Opt. Express (3)

Opt. Fiber Conf (1)

H. Cai, X. Jiangzhen, H. Zhao, C. Gaoting, and F. Zujie, "All-fiber Q-switched Erbium laser using a fiber bragg grating placed in loop mirror as a wavelength-selective intensity modulator," Opt. Fiber Conf., ThGG31, 654-655 (2002).

Opt. Lett. (2)

Other (3)

A. E. Siegman, in Lasers, (Oxford: Oxford University, 1086).

W. Snyder, J. D. Love, in Optical Waveguide Theory, (London: Chapman & Hall, 1983

M. Born, E. Wolf, in Principles of Optics, (New York: Macmillan, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of device operation principle.

Fig. 2.
Fig. 2.

Actual photograph of assembled single stage MOW on MAP device.

Fig. 3.
Fig. 3.

Spectral response with applied voltages of MOW on MAP modulator.

Fig. 4.
Fig. 4.

Measurement setup for frequency response investigation.

Fig. 5.
Fig. 5.

Frequency response of the MOW on MAP modulator.

Fig. 6.
Fig. 6.

Impulse response of the proposed device.

Fig. 7.
Fig. 7.

Energy extraction efficiency versus initial inversion ratio.

Fig. 8.
Fig. 8.

Q-switched Yb3+-doped fiber laser setup.

Fig. 7.
Fig. 7.

Q-switched laser pulses with pump powers of (a) 4.1W and (b) 5.2W.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C ( z ) = 2 Δ ρ 0 U 2 V 3 K 0 ( Wd / ρ 0 ) K 1 2 ( W )
V = 2 π λ ρ n co 2 Δ , 2 Δ = n co 2 n cl 2 n co 2 .
Δ n r C b σ z = C b F z A
T b τ c r 1 ( 25 ± 5 )
τ pluse r 1 ln r × τ c

Metrics