Abstract

In this paper we present an all-optical approach allowing the realization of logic gates and other building blocks of a processing unit. The modules have dimensions of only few microns, operation rate of tens of Tera Hertz, low power consumption and high energetic efficiency. The operation principle is based upon construction of unconventional wave guiding nano-photonic structures which do not include non-linear materials or interactions. The devices developed and presented in this paper include logic diffractive phase detector, generalized diffractive phase detector, logic gates as AND, OR and NOT, amplitude modulator and analog adder/ subtractor.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode non-linear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002).
    [CrossRef]
  2. M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, "All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry," Opt. Lett. 28, 2506-2508 (2003).
    [CrossRef] [PubMed]
  3. L. Brzozowski and E. H. Sargent, "All-optical analog-to digital converters, hardlimiters, and logic gates," J. Lightwave Technol. 19, 114-119 (2001).
    [CrossRef]
  4. M. Pecciantu, C. Conti, G. Assanto, A. D. Luca, and U. Umeton, "All-optical switching and logic gating with spatial solitons in liquid crystals," Appl. Phys. Lett. 81, 3335-3337 (2002).
    [CrossRef]
  5. N. Starodumov, Y. O. Barmenkov, A. Martinez, I. Torres, and L. A. Zenteno, "Experimental demonstration of a Raman effect based optical transistor," Opt. Lett. 23, 352-354 (1998).
    [CrossRef]
  6. A. Gupta, K. Tsutsumi, and J. Nakayama, "Synthesis of Hadamard transformers by use of multimode interference optical waveguides," Appl. Opt. 42, 2730-2738 (2003).
    [CrossRef] [PubMed]
  7. S. Y. Lee, S. Darmawan, C. W. Lee, and M. K. Chin, "Transformation between directional couplers and multimode interferometers based on ridge waveguides," Opt. Express 12, 3079-3084 (2004), <a href="http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-14-3079">http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-14-3079</a>.
    [CrossRef] [PubMed]
  8. S. Nagai, G. Morishima, H. Inayoshi, and K. Utaka, "Multimode interference photonic switches," J. Lightwave Technol. 20, 675-681 (2002).
    [CrossRef]
  9. A. Irace and G. Breglio, "All-silicon optical temperature sensor based on Multi-Mode Interference," Opt. Express 11, 2807-2812 (2003), <a href="http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2807">http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2807,?a>.
    [CrossRef] [PubMed]
  10. B. J. Li, S. J. Chua, E. A. Fitzgerald, B. S. Chaudhari, S. Jiang, and Z. Cai, "Intelligent integration of optical power splitter with optically switchable cross-connect based on multimode interference principle in SiGe/Si," Appl. Phys. Lett. 85, 1119-1121 (2004).
    [CrossRef]
  11. Z. Zalevsky, A. Rudnitsky, and M. Nathan, "All-optical devices and methods for data processing," Israel Patent Application # 166810, Feb. 2005.
    [PubMed]

Appl. Opt.

Appl. Phys. Lett.

M. Pecciantu, C. Conti, G. Assanto, A. D. Luca, and U. Umeton, "All-optical switching and logic gating with spatial solitons in liquid crystals," Appl. Phys. Lett. 81, 3335-3337 (2002).
[CrossRef]

B. J. Li, S. J. Chua, E. A. Fitzgerald, B. S. Chaudhari, S. Jiang, and Z. Cai, "Intelligent integration of optical power splitter with optically switchable cross-connect based on multimode interference principle in SiGe/Si," Appl. Phys. Lett. 85, 1119-1121 (2004).
[CrossRef]

IEEE J. Quantum Electron.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode non-linear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

Israel Patent Application #166810

Z. Zalevsky, A. Rudnitsky, and M. Nathan, "All-optical devices and methods for data processing," Israel Patent Application # 166810, Feb. 2005.
[PubMed]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Numerical model for simulations.

Fig. 2.
Fig. 2.

A comparison between the phases of two input beams in a DPD. (a) Schematic device structure. (b) – (c) Numerical simulations.

Fig. 3.
Fig. 3.

Generalized DPD. (a). Schematic device structure. (b). Actual device structure. (c). Information beam is absent. (d). Information beam has phase that is equal to the reference beam (output amplitude is 1.5 times larger). (e). Information beam has phase that is opposite to the reference beam.

Fig. 4.
Fig. 4.

Logic AND/OR gate. (a). Schematic sketch. (b). Device structure. (c) – (f). The four possible combinations for the input/ output of the device. Note that indeed only in (d). The output in the left output facet is not zero. (g). Graphical description of the operation concept of the logical gate.

Fig. 5.
Fig. 5.

Logic NOT gate. a). Schematic sketch. b). Numerical simulation of the device.

Fig. 6.
Fig. 6.

Analog adder/subtractor. (a). Schematic sketch. (b).-(c). Numerical simulation.

Fig. 7.
Fig. 7.

Tolerance to temporal bandwidth. (a). The correct wavelength. (b). Deviation of approximately 30% from the correct wavelength.

Fig. 8.
Fig. 8.

Schematic sketch of Boolean logic processing unit.

Fig. 9.
Fig. 9.

Experimental results in water bath: Hydro-optical wave interaction.

Tables (2)

Tables Icon

Table 1. The output of the Diffractive Phase Detector for the four possibilities of input combinations.

Tables Icon

Table 2. The output of the Generalized DPD for the three possibilities of input channel combinations.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

2 E y 2 + 2 E z 2 = μ μ 0 ε ε 0 ω 2 E
2 E y 2 + [ 2 πn ( y ) λ ] 2 E = β 2 E
E y z = m = 0 M 1 A m E m ( y ) exp [ j ( ωt β m z ) ]
2 E y 2 = E 23 2 E 22 + E 21 Δ y 2
2 E z 2 = E 32 2 E 22 + E 12 Δ z 2
E 32 = ( μ μ 0 ε ε 0 ω 2 E 22 E 23 2 E 22 + E 21 Δ y 2 ) Δ z 2 + 2 E 22 E 12
E 11 E 1 M = exp ( ikΔz ) cos ( π M / 2 m D )
E 21 E 2 M = exp ( ik 2 Δz ) cos ( π M / 2 m D )
ν f = c L = c = ν opt N
1 1 1 1 A B = Δ

Metrics