Abstract

Strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber is observed using a cw laser at 1.55 μm wavelength region. Brillouin threshold for a 5-m-long fiber is as small as 85 mW. The Brillouin frequency shift v B and the gain linewidth Δv B are 7.95 GHz and 13.2 MHz, respectively, measured with heterodyne detection and an RF spectrum analyzer. A Brillouin gain coefficient g B of 6.0 × 10-9 m/W, about 134 times larger than that of fused silica fiber, is obtained for As2Se3 single mode fiber from measurements of Brillouin threshold power and the gain linewidth.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. P. Ippen and R.H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-540 (1972).
    [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, California, 1995.
  3. Y. Okawachi, J. E. Sharping, A. L. Gaeta, M. S. Bigelow, A. Schweinsberg, R. W. Boyd, Z. Zhu, and D. J. Gauthier, "Tunable all-optical delays via Brillouin slow light in an optical fiber," CLEO 2005, Baltimore, MD, CMCC3.
  4. H. Yoshida, M. Nakatsuka, H. Fujita, T. Sasaki, and K. Yoshida, "High-energy operation of a stimulated Brillouin scattering mirror in an L-Arginine phosphate monohydrate crystal," Appl. Opt. 36, 7783-7787 (1997).
    [CrossRef]
  5. J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation," Opt. Lett. 30, 1267-1269 (2005).
    [CrossRef] [PubMed]
  6. M. Asobe, T, Kanamori, and K. I. Kubodera, "Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches," IEEE J. Quantum Electron. 29, 2325-2333 (1993).
    [CrossRef]
  7. G. Lens, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y, Hwang, S. Spalter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, "Large Kerr-effect in bulk Se-based chalcogenide glasses," Opt. Lett. 25, 254-257 (2000).
    [CrossRef]
  8. J. M. Harbold, F. O. IIday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw and I. D. Aggarwal, "Highly nonlinear As-S-Se glasses for all-optical switching," Opt. Lett. 27, 119-121 (2002).
    [CrossRef]
  9. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, I. D. Aggarwal, "Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers," J. Opt. Soc. Am. B 21, 1146-1155 (2004).
    [CrossRef]
  10. P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, "Small-core As-Se fiber for Raman amplification," Opt. Lett. 28, 1406-1408 (2003).
    [CrossRef] [PubMed]
  11. L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss and B. J. Eggleton, "Investigation of self-phase modulation based optical regenerator in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7637">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7637</a>.
    [CrossRef] [PubMed]
  12. K. Ogusu, H. Li, and M. Kitao, "Brillouin-gain coefficient of chalcogenide glasses," J. Opt. Soc. Am. B 21, 1302-1304 (2004).
    [CrossRef]
  13. R. Mossadegh, J. S. Sanghera, D. Schaafsma, B. J. Cole, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, "Fabrication of single-mode chalcogenide optical fiber," J. Lightwave Technol. 16, 214-217 (1998).
    [CrossRef]
  14. R. G Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Opt. 11, 2489-2494 (1972).
    [CrossRef] [PubMed]
  15. D. Cotter, "Observation of stimulated Brillouin scattering in low-loss silica fiber at 1.3 µm," Electron. Lett. 18, 495-496 (1982).
    [CrossRef]
  16. R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, "Spontaneous Brillouin scattering for single-mode optical-fiber characterization," Electron. Lett. 22, 1011-1013 (1986).
    [CrossRef]
  17. R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. 15, 1157-1160 (1979).
    [CrossRef]
  18. A. Ghatak and K. Thyagarajan, Introduction to fiber optics, Cambridge University Press, New York, 1998.
  19. N. Uchida and N. Niizeki, "Acoustooptic deflection materials and techniques," Proceedings of IEEE 61, 1073-1092 (1973).
    [CrossRef]
  20. Y. Ohmachi and N. Uchida, "Vitreous As2Se3: Investigation of acousto-optical properties and application to infrared modulator," J. Appl. Phys. 43, 1709-1712 (1972).
    [CrossRef]
  21. G. W. Faris, L. E. Jusinski, and A. P. Hickman, "High resolution stimulated Brillouin spectroscopy in glasses and crystals," J. Opt. Soc. Am. B 10, 587-599 (1993).
    [CrossRef]
  22. T. C. Rich and D. A. Pinnow, "Evaluation of fiber optical waveguides using Brillouin spectroscopy," Appl. Opt. 13, 1376 (1974).
    [CrossRef] [PubMed]
  23. J. Bar-Joseph, A. A. Friesem, E. Lichtman and R.G. Warris, "Steady and relaxation oscillations of stimulated Brillouin scattering in single-mode optical fibers," J. Opt. Soc. Am. B 2, 1606-1611 (1985).
    [CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

E. P. Ippen and R.H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-540 (1972).
[CrossRef]

CLEO 2005 (1)

Y. Okawachi, J. E. Sharping, A. L. Gaeta, M. S. Bigelow, A. Schweinsberg, R. W. Boyd, Z. Zhu, and D. J. Gauthier, "Tunable all-optical delays via Brillouin slow light in an optical fiber," CLEO 2005, Baltimore, MD, CMCC3.

Electron. Lett. (2)

D. Cotter, "Observation of stimulated Brillouin scattering in low-loss silica fiber at 1.3 µm," Electron. Lett. 18, 495-496 (1982).
[CrossRef]

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, "Spontaneous Brillouin scattering for single-mode optical-fiber characterization," Electron. Lett. 22, 1011-1013 (1986).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. 15, 1157-1160 (1979).
[CrossRef]

M. Asobe, T, Kanamori, and K. I. Kubodera, "Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches," IEEE J. Quantum Electron. 29, 2325-2333 (1993).
[CrossRef]

J. Appl. Phys. (1)

Y. Ohmachi and N. Uchida, "Vitreous As2Se3: Investigation of acousto-optical properties and application to infrared modulator," J. Appl. Phys. 43, 1709-1712 (1972).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (4)

Opt. Express (1)

Opt. Lett. (4)

Proceedings of IEEE (1)

N. Uchida and N. Niizeki, "Acoustooptic deflection materials and techniques," Proceedings of IEEE 61, 1073-1092 (1973).
[CrossRef]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, California, 1995.

A. Ghatak and K. Thyagarajan, Introduction to fiber optics, Cambridge University Press, New York, 1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup used for observation of Brillouin Scattering in chalcogenide fiber (a) and linewidth measurement using heterodyne detection (b).

Fig. 2.
Fig. 2.

Transmission loss of single-mode As2Se3 chalcogenide fiber.

Fig. 3.
Fig. 3.

Optical spectra of output from As2Se3 fiber in the backward direction for different pump power level.

Fig. 4.
Fig. 4.

Power of light backscattered from the 4.9 m long chalcogenide fiber.

Fig. 5.
Fig. 5.

RF spectrum of the beat signal obtained by heterodyne detection for a pump power of 71 mw.

Tables (1)

Tables Icon

Table 1. Brillouin shift, linewidth and gain coefficients of As2Se3 and fused silica at 1.56 μm

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g B K ( P th / A eff ) L eff 21
g B = 2 π n 7 p 12 2 c λ P 2 ρ v a Δ ν B

Metrics