Abstract

Nonlinear propagation of fs laser pulses in liquids and the dynamic processes of filamentation such as self-focusing, intensity clamping, and evolution of white light production have been analyzed by using one- and two-photon fluorescence. The energy losses of laser pulses caused by multiphoton absorption and conical emission have been measured respectively by z-scan technique. Numerical simulations of fs laser propagation in water have been made to explain the evolution of white light production as well as the small-scale filaments in liquids we have observed by a nonlinear fluorescence technique.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, "Supercontinuum Generation in Gases," Phys. Rev. Lett. 57, 2268-2271 (1986).
    [CrossRef] [PubMed]
  2. A. Brodeur, and S. L. Chin, "Ultrafast white-light continuum generation and self-focusing in transparent condensed media," J. opt. Soc. Am. B 16, 637-650 (1999).
    [CrossRef]
  3. V.P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, "Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation)," Appl. Phys. B 77, 149-165 (2003).
    [CrossRef]
  4. S. Henz and J. Herrmann, "Self-channeling and pulse shortening of femtosecond pulses in multiphoton-ionized dispersive dielectric solids," Phys. Rev. A 59, 2528-2531(1999).
    [CrossRef]
  5. L. Bergé and A. Couairon, "Gas-Induced Solitons," Phys. Rev. Lett. 86, 1003-1006 (2001).
    [CrossRef] [PubMed]
  6. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, "Generation of intense, carrier-envelope phase-locker few-cycle laser pulses through filamentation," Appl. Phys. B 79, 673-677 (2004).
    [CrossRef]
  7. Hélène Ward and Luc Bergé, "Temporal Shaping of Femtosecond Solitary Pulses in Photoionized Media," Phys. Rev. Lett. 90, 053901-4 (2003).
    [CrossRef] [PubMed]
  8. P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C.Wedekind, H. Wille, L.Wöste, and C. Ziener, "Remote sensing of the atmosphere using ultrashort laser pulses," Appl. Phys. B 71, 573-580 (2000).
    [CrossRef]
  9. J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y-B. Andre, A. Mysyrowicz, R. Sauerbrey, J. -P. Wolf, and L. Wöste, "White-light filaments for atmospheric analysis," Science 301, 61-64 (2003).
    [CrossRef] [PubMed]
  10. S. Minardi,G. Arrighi, and P. Di Trapani, "Solitonic all-optical switch based on the fractional talbot effect," Opt. Lett. 27, 2097-2099 (2002).
    [CrossRef]
  11. Y. R. Shen and Y. J. Shaham, "Beam Deterioration and Stimulated Raman Effect," Phys. Rev. Lett. 15, 1008-1011 (1965).
    [CrossRef]
  12. G. Y. Yang, and Y. R. Shen, "Spectral broadening of ultrashort pulses in a nonlinear medium," Opt. Lett. 9, 510-512 (1984).
    [CrossRef] [PubMed]
  13. A. A. Zozulya, S. A. Diddams, A. G. Van Engen, and T. S. Clement, "Propagation Dynamics of Intense Femtosecond Pulses: Multiple Splittings, Coalescence, and Continuum Generation," Phys. Rev. Lett. 82, 1430-1433 (1999).
    [CrossRef]
  14. C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, "Nonlinear Electromagnetic X Waves," Phys. Rev. Lett. 90, 170406 (2003).
    [CrossRef] [PubMed]
  15. C. Conti, "X-wave-mediated instability of plane waves in Kerr media," Phys. Rev. E 68, 016606 (2003).
    [CrossRef]
  16. A. L. Gaeta, "Catastrophic Collapse of Ultrashort Pulses," Phys. Rev. Lett. 84, 3582 (2000).
    [CrossRef] [PubMed]
  17. T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591 (2000).
    [CrossRef]
  18. G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, "Organizing Multiple Femtosecond Filaments in Air," Phys, Rev. Lett. 93, 035003 (2004).
    [CrossRef]
  19. I. S. Golubtsov, V. P. Kandidov, I. S. Golubtsov and O. G. Kosareva, "Conical emission of high-power femtosecond laser pulse in the atmosphere," Atm. Oceanic Opt. 14, 303-315 (2001).
  20. M. Centurion, Y. Pu, M. Tsang, and D. Psaltis, "Dynamics of filament formation in a Kerr medium," Phys. Rev. A 71, 063811 (2005).
    [CrossRef]
  21. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, A. Mysyrowicz, "Conical emission from self-guided femtosecond pulses in air," Opt. Lett. 21, 62 (1996).
    [CrossRef] [PubMed]
  22. O. G. Kosareva, V. P. Kandidov, A. Brodeur, C. Y. Chien, S. L. Chin, "Conical emission fromlaserplasma interactions in the filamentationof powerful ultrashort laser pulses in air," Opt. Lett. 22, 1332 (1997).
    [CrossRef]
  23. I. Golub, "Optical characteristics of supercontinuum generation," Opt. Lett. 15, 305 (1990).
    [CrossRef] [PubMed]
  24. Q. Xing, K. M. Yoo, and R. R. Alfano, "Conical emission by four-photon parametric generation using femtosecond laser pulses," Appl. Opt. 32, 2087-2089 (1993).
    [CrossRef] [PubMed]
  25. M. Kolesik, E. M. Wright, and J. V. Moloney, "Dynamic Nonlinear X Waves for Femtosecond Pulse Propagation in Water," Phys. Rev. Lett. 92, 253901 (2004).
    [CrossRef] [PubMed]
  26. M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright., "Physical Factors Limiting the Spectral Extent and Band Gap Dependence of Supercontinuum Generation," Phys. Rev. Lett. 91, 043905 (2003).
    [CrossRef] [PubMed]
  27. J. Liu, H. Schroedser, S. L. Chin, W. Yu, R. Li, Z. Xu, "Space-frequency coupling, conical waves, and smallscale filamentation in water," Phys. Rev. A, 2005 (in press).
  28. A. Dubietis, E. Gaižauskas, G. Tamošauskas, and P. Di Trapani, "Light Filaments without Self-Channeling," Phys. Rev. Lett. 92, 253903 (2004).
    [CrossRef] [PubMed]
  29. H. Schroeder and S. L. Chin, "Visualization of the evolution of multiple filaments in methanol," Opt. Commun. 234, 399-406 (2004).
    [CrossRef]
  30. H. Schroeder, J. Liu and S. L. Chin, "From random to controlled small-scale filamentation in water," Opt. Express 12, 4768 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4768">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4768</a>.
    [CrossRef] [PubMed]
  31. J. Liu, H. Schroedser, S. L. Chin, R. Li, and Z. Xu, "Ultrafast control of multiple filamentation by ultrafast laser pulses," Appl. Phys. Lett. 87, 161105 (2005).
    [CrossRef]
  32. R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, H. Kuroda, "Nonlinear refraction in CS2," Appl. Phys. B 78, 433-438 (2004).
    [CrossRef]
  33. C. H. Fan, J. Sun, and J. P. Longtin, "Breakdown threshold and localized electron density in water induced by ultrashort laser pulses," J. Appl. Phys. 91, 2530-2536 (2002).
    [CrossRef]
  34. I. A. Danilchenko arXiv2 :physics/0306020 v1 June 2003.

Appl. Opt. (1)

Appl. Phys. B (4)

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, H. Kuroda, "Nonlinear refraction in CS2," Appl. Phys. B 78, 433-438 (2004).
[CrossRef]

V.P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, "Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation)," Appl. Phys. B 77, 149-165 (2003).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, "Generation of intense, carrier-envelope phase-locker few-cycle laser pulses through filamentation," Appl. Phys. B 79, 673-677 (2004).
[CrossRef]

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C.Wedekind, H. Wille, L.Wöste, and C. Ziener, "Remote sensing of the atmosphere using ultrashort laser pulses," Appl. Phys. B 71, 573-580 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

J. Liu, H. Schroedser, S. L. Chin, R. Li, and Z. Xu, "Ultrafast control of multiple filamentation by ultrafast laser pulses," Appl. Phys. Lett. 87, 161105 (2005).
[CrossRef]

Atm. Oceanic Opt. (1)

I. S. Golubtsov, V. P. Kandidov, I. S. Golubtsov and O. G. Kosareva, "Conical emission of high-power femtosecond laser pulse in the atmosphere," Atm. Oceanic Opt. 14, 303-315 (2001).

J. Appl. Phys. (1)

C. H. Fan, J. Sun, and J. P. Longtin, "Breakdown threshold and localized electron density in water induced by ultrashort laser pulses," J. Appl. Phys. 91, 2530-2536 (2002).
[CrossRef]

J. opt. Soc. Am. B (1)

Opt. Commun. (1)

H. Schroeder and S. L. Chin, "Visualization of the evolution of multiple filaments in methanol," Opt. Commun. 234, 399-406 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Phys, Rev. Lett. (1)

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, "Organizing Multiple Femtosecond Filaments in Air," Phys, Rev. Lett. 93, 035003 (2004).
[CrossRef]

Phys. Rev. A (3)

J. Liu, H. Schroedser, S. L. Chin, W. Yu, R. Li, Z. Xu, "Space-frequency coupling, conical waves, and smallscale filamentation in water," Phys. Rev. A, 2005 (in press).

M. Centurion, Y. Pu, M. Tsang, and D. Psaltis, "Dynamics of filament formation in a Kerr medium," Phys. Rev. A 71, 063811 (2005).
[CrossRef]

S. Henz and J. Herrmann, "Self-channeling and pulse shortening of femtosecond pulses in multiphoton-ionized dispersive dielectric solids," Phys. Rev. A 59, 2528-2531(1999).
[CrossRef]

Phys. Rev. E (1)

C. Conti, "X-wave-mediated instability of plane waves in Kerr media," Phys. Rev. E 68, 016606 (2003).
[CrossRef]

Phys. Rev. Lett. (10)

A. L. Gaeta, "Catastrophic Collapse of Ultrashort Pulses," Phys. Rev. Lett. 84, 3582 (2000).
[CrossRef] [PubMed]

A. A. Zozulya, S. A. Diddams, A. G. Van Engen, and T. S. Clement, "Propagation Dynamics of Intense Femtosecond Pulses: Multiple Splittings, Coalescence, and Continuum Generation," Phys. Rev. Lett. 82, 1430-1433 (1999).
[CrossRef]

C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, "Nonlinear Electromagnetic X Waves," Phys. Rev. Lett. 90, 170406 (2003).
[CrossRef] [PubMed]

Y. R. Shen and Y. J. Shaham, "Beam Deterioration and Stimulated Raman Effect," Phys. Rev. Lett. 15, 1008-1011 (1965).
[CrossRef]

L. Bergé and A. Couairon, "Gas-Induced Solitons," Phys. Rev. Lett. 86, 1003-1006 (2001).
[CrossRef] [PubMed]

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, "Supercontinuum Generation in Gases," Phys. Rev. Lett. 57, 2268-2271 (1986).
[CrossRef] [PubMed]

Hélène Ward and Luc Bergé, "Temporal Shaping of Femtosecond Solitary Pulses in Photoionized Media," Phys. Rev. Lett. 90, 053901-4 (2003).
[CrossRef] [PubMed]

A. Dubietis, E. Gaižauskas, G. Tamošauskas, and P. Di Trapani, "Light Filaments without Self-Channeling," Phys. Rev. Lett. 92, 253903 (2004).
[CrossRef] [PubMed]

M. Kolesik, E. M. Wright, and J. V. Moloney, "Dynamic Nonlinear X Waves for Femtosecond Pulse Propagation in Water," Phys. Rev. Lett. 92, 253901 (2004).
[CrossRef] [PubMed]

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright., "Physical Factors Limiting the Spectral Extent and Band Gap Dependence of Supercontinuum Generation," Phys. Rev. Lett. 91, 043905 (2003).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591 (2000).
[CrossRef]

Science (1)

J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y-B. Andre, A. Mysyrowicz, R. Sauerbrey, J. -P. Wolf, and L. Wöste, "White-light filaments for atmospheric analysis," Science 301, 61-64 (2003).
[CrossRef] [PubMed]

Other (1)

I. A. Danilchenko arXiv2 :physics/0306020 v1 June 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Experimental setup for visualization of filamentation. A fs laser beam delivered by a Ti: sapphire laser system passes through the slit and propagates in ethanol.

Fig. 2.
Fig. 2.

Development of a one-dimension filament array in ethanol behind a slit. The fluorescence is excited by two-photon absorption of the fundamental laser beam and one-photon absorption of white light. The dyes in ethanol are (a) Coumarin 500, (b) Fluorescein 27, and (c) DODCI respectively. The pictures are taken by a single shot with the same condition except the dyes. The picture size shown here is H×L=2.5 mm× 10.7 mm and L corresponds to the propagation distance from the left to the right. The three pictures (d), (e) and (f) below which are taken with a higher spatial resolution (2.5 μm) correspond to the first filament in (a), (b) and (c) respectively.

Fig. 3.
Fig. 3.

Evolution of fluorescence intensity as well as the diameter of the first filament as a function of propagation distance. The fluorescence is excited in the blue dye in ethanol.

Fig. 4.
Fig. 4.

Vertical line profile of fluorescence signal at the propagation distances z=8.0, 8.6 and 9.0mm respectively. The fluorescence is excited by the blue dye Coumarin 500 in ethanol.

Fig. 5.
Fig. 5.

(a) Evolution of fluorescence intensity emitted by blue, green and red dye respectively from the same filament. (b) Shot to shot measurements of fluorescence signal emitted by blue dye from the same filament.

Fig. 6.
Fig. 6.

(a) Development of a one-dimension filament array in water behind a slit. The fluorescence is excited by two-photon absorption of the fundamental laser beam and one-photon absorption of white light. The dye is Rhodamine B. λabsorption=556nm. (b) Evolution of fluorescence intensity along the first filament in (a).

Fig. 7.
Fig. 7.

(a) Experimental setup for z-scan measurement of energy loss caused by CE and MPA respectively. (b) Z-scan measurement of energy loss caused by MPA. The energy meter is placed close to the exit surface of the sample cell. (c) Z-scan measurement of energy loss caused by conical emission. The energy meter is placed 2m away from the exit surface of the sample cell. (d) Z-scan measurement of energy loss caused by CE for water, ethanol and CS2 respectively. The energy meter is placed 2m away from the exit surface of the sample cell.

Fig. 8.
Fig. 8.

(a) Experimental setup for measurement of beam profiles of CE. (b) Measured beam profiles of CE for CS2 centred at red (λ=680nm) and green (λ=520nm) light respectively. (c) Measured beam profiles of CE for water centred at red and green light respectively.

Fig. 9.
Fig. 9.

Evolution of maximum on-axis laser intensity, diameter of the laser beam, and two-photon plus one-photon (556nm for Rhodamine B) fluorescence as a function of propagation distance.

Fig. 10.
Fig. 10.

Evolution of maximum on-axis laser intensity together with the evolutions of the intensities of white light centred at different wavelengths

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

z E ̂ ( r , z , ω ) = [ i 2 k ( ω ) 2 + i k ( ω ) ] E ̂ ( r , z , ω ) + i ω 2 P ̂ N L ( r , z , ω ) 2 k ( ω ) c 2 ε 0 ω J ̂ f ( r , z , ω ) 2 k ( ω ) c 2 ε 0
P N L ( r , z , t ) = 2 ε 0 n b n 2 I ( r , z , t ) E ( r , z , t )
J ̂ f ( r , z , ω ) = e 2 m ( v i ω ) n e ( r , z , ω ) E ( r , z , ω ) I p β ( k ) I ( k 1 ) ( r , z , ω ) E ( r , z , ω ) k 0
n e ( r , z , t ) = t I rate ( r , z , t ) d t
I rate ( r , z , t ) = β ( k ) I k ( r , z , t ) η a n e ( r , z , t ) η r n e 2 ( r , z , t )

Metrics