Abstract

We developed a high-speed polarization sensitive optical coherence tomography (PS-OCT) system for retinal imaging based on spectral domain OCT. The system uses two spectrometers, one for each polarization channel, that operate in parallel at 20000 A-lines/s each. It provides reflectivity, retardation, and cumulative optic axis orientation simultaneously. We present our instrument and discuss the requirements for the alignment of the two spectrometers specific for our setup. We show 2D spectral domain PS-OCT images and – to the best of our knowledge – the first 3D spectral domain PS-OCT data sets in form of fly-through movies and volume rendered data sets recorded in human retina in vivo.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pufialito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. B. E. Bouma and G. J. Tearney, Handbook of optical coherence tomography (Marcel Dekker, New York, 2002).
  3. A. F. Fercher and C. K. Hitzenberger, "Optical Coherence Tomography," Prog. Opt. 44, 215-302 (2002).
    [CrossRef]
  4. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization sensitive low coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992).
    [CrossRef]
  5. J. F. de Boer, T. E. Milner, M. J. C. Van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
    [CrossRef] [PubMed]
  6. M. J. Everett, K. Schoenenberger, B. W. Colston Jr., and L. B. Da Silva, "Birefringence characterization of biological tissue by use of optical coherence tomography," Opt. Lett. 23, 228-230 (1998).
    [CrossRef]
  7. A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr: "Polarization-sensitive optical coherence tomography of dental structures," Caries Res. 34, 59-69 (2000).
    [CrossRef]
  8. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, "Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components," Opt. Lett. 29, 2512-2514 (2004).
    [CrossRef] [PubMed]
  9. M. Todorovic, S. Jiao, L. V. Wang, and G. Stoica, "Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography," Opt. Lett. 29, 2402-2404 (2004).
    [CrossRef] [PubMed]
  10. N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander III, and T. E. Milner, "Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT)," Opt. Express 13, 4611-4628 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4611">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4611</a>.
    [CrossRef] [PubMed]
  11. M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, "Three dimensional polarization sensitive OCT of human skin in vivo," Opt. Express 12, 3236-3244 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3236">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3236</a>.
    [CrossRef] [PubMed]
  12. M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C.K. Hitzenberger, "Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT," Opt. Express 12, 5940-5951 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5940">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5940</a>.
    [CrossRef] [PubMed]
  13. B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, "In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography," J. Biomed. Opt. 6, 474-479 (2001).
    [CrossRef] [PubMed]
  14. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J.F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002).
    [CrossRef]
  15. E. Götzinger, M. Pircher, M. Sticker, I. Dejaco-Ruhswurm, S. Kaminski, O. Findl, C. Skorpik, A.F. Fercher, and C.K. Hitzenberger, "Three dimensional polarization sensitive optical coherence tomography of normal and pathologic human cornea," Proc. SPIE 5140, 120-124 (2003).
    [CrossRef]
  16. M. Pircher, E. Goetzinger, O. Findl, and C.K. Hitzenberger, "Polarization Preserving and Depolarizing Ocular Tissues Studied With Polarization Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 46, E-Abstract 4267 (2005).
  17. J. F. de Boer, T. E. Milner, and J. S. Nelson, "Determination of the depth resolved Stokes parameters of light backscattered from turbid media using polarization sensitive optical coherence tomography," Opt. Lett. 24, 300-302 (1999).
    [CrossRef]
  18. G. Yao and L. V. Wang, "Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography," Opt. Lett. 24, 537-539 (1999).
    [CrossRef]
  19. S. Jiao and L. V. Wang, "Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography," J. Biomed. Opt. 7, 350-358 (2002).
    [CrossRef] [PubMed]
  20. C. K. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. F. Fercher, "Measurment and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Opt. Express 9, 780-790 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-780.
    [CrossRef] [PubMed]
  21. E. Götzinger, M. Pircher, M. Sticker, A. F. Fercher, and C. K. Hitzenberger: "Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 94-102 (2004).
    [CrossRef]
  22. M. Pircher, E. Goetzinger, R. Leitgeb, C. K. Hitzenberger: "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004).
    [CrossRef] [PubMed]
  23. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El- Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  24. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>.
    [CrossRef] [PubMed]
  25. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal to noise ratio in spectral domain compared with time domain optical coherence tomography," Opt. Lett. 28, 2067- 2069 (2003).
    [CrossRef] [PubMed]
  26. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>.
    [CrossRef] [PubMed]
  27. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116</a>.
    [CrossRef] [PubMed]
  28. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490</a>.
    [CrossRef] [PubMed]
  29. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
    [CrossRef]
  30. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 ìm," Opt. Express 13, 3931-3944 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3931">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3931</a>.
    [CrossRef] [PubMed]
  31. A. W. Dreher, K. Reiter, and R. N. Weinreb,"Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer," Appl. Opt. 31, 3730-3735 (1992).
    [CrossRef] [PubMed]
  32. H. B. klein Brink and G. J. van Blokland, "Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry," J. Opt. Soc. Am. A 5, 49-57 (1988).
    [CrossRef]
  33. R. N. Weinreb, L. Zangwill, C. C. Berry, R. Bathija, P. A. Sample, "Detection of glaucoma with scanning laser polarimetry," Arch Ophthalmol. 116, 1583-1589 (1998).
    [PubMed]
  34. N.T. Choplin, Q. Zhou, and R. W. Knighton, "Effect of individualized compensation for anterior segment birefringence on retinal nerve fiber layer assessments as determined by scanning laser polarimetry," Ophthalmology 110, 719-725 (2003).
    [CrossRef] [PubMed]
  35. B. Cense, T. C. Chen, M. Mujat, C. Joo, T. Akkin, B. H. Park, M. C. Pierce, A. Yun, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Spectral-domain polarization-sensitive optical coherence tomography at 850 nm", Proc. SPIE 5690, 159-162 (2005).
    [CrossRef]
  36. B. Cense, Optical coherence tomography for retinal imaging (PhD Dissertation, Twente University 2005).
  37. R. N. Bracewell, The Fourier transform and its applications, 3rd ed. (McGraw-Hill, New York, 2000).
  38. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, and J. G. Fujimoto, "Ultrahighresolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
    [CrossRef] [PubMed]
  39. P. J. Tadrous (2002), <a href="http://www.bialith.com/">http://www.bialith.com/</a>.
  40. B. C. Chauhan, R. P. LeBlanc, T. A. McCormick, and J. B. Rogers, "Test-retest variability of topographic measurements with confocal scanning laser tomography in patients with glaucoma and control subjects," Am. J. Ophthalmol. 118, 9-15 (1994).
    [PubMed]

Am. J. Ophthalmol.

B. C. Chauhan, R. P. LeBlanc, T. A. McCormick, and J. B. Rogers, "Test-retest variability of topographic measurements with confocal scanning laser tomography in patients with glaucoma and control subjects," Am. J. Ophthalmol. 118, 9-15 (1994).
[PubMed]

Appl. Opt.

Arch Ophthalmol.

R. N. Weinreb, L. Zangwill, C. C. Berry, R. Bathija, P. A. Sample, "Detection of glaucoma with scanning laser polarimetry," Arch Ophthalmol. 116, 1583-1589 (1998).
[PubMed]

Caries Res.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr: "Polarization-sensitive optical coherence tomography of dental structures," Caries Res. 34, 59-69 (2000).
[CrossRef]

Invest. Ophthalmol. Vis. Sci.

M. Pircher, E. Goetzinger, O. Findl, and C.K. Hitzenberger, "Polarization Preserving and Depolarizing Ocular Tissues Studied With Polarization Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 46, E-Abstract 4267 (2005).

J. Biomed. Opt.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, "In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography," J. Biomed. Opt. 6, 474-479 (2001).
[CrossRef] [PubMed]

S. Jiao and L. V. Wang, "Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography," J. Biomed. Opt. 7, 350-358 (2002).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, M. Sticker, A. F. Fercher, and C. K. Hitzenberger: "Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 94-102 (2004).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nature Med.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, and J. G. Fujimoto, "Ultrahighresolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Ophthalmology

N.T. Choplin, Q. Zhou, and R. W. Knighton, "Effect of individualized compensation for anterior segment birefringence on retinal nerve fiber layer assessments as determined by scanning laser polarimetry," Ophthalmology 110, 719-725 (2003).
[CrossRef] [PubMed]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El- Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>.
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 ìm," Opt. Express 13, 3931-3944 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3931">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3931</a>.
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>.
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116</a>.
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490</a>.
[CrossRef] [PubMed]

N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander III, and T. E. Milner, "Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT)," Opt. Express 13, 4611-4628 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4611">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4611</a>.
[CrossRef] [PubMed]

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, "Three dimensional polarization sensitive OCT of human skin in vivo," Opt. Express 12, 3236-3244 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3236">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3236</a>.
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C.K. Hitzenberger, "Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT," Opt. Express 12, 5940-5951 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5940">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5940</a>.
[CrossRef] [PubMed]

C. K. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. F. Fercher, "Measurment and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Opt. Express 9, 780-790 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-780.
[CrossRef] [PubMed]

Opt. Lett.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J.F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002).
[CrossRef]

J. F. de Boer, T. E. Milner, and J. S. Nelson, "Determination of the depth resolved Stokes parameters of light backscattered from turbid media using polarization sensitive optical coherence tomography," Opt. Lett. 24, 300-302 (1999).
[CrossRef]

G. Yao and L. V. Wang, "Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography," Opt. Lett. 24, 537-539 (1999).
[CrossRef]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, "Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components," Opt. Lett. 29, 2512-2514 (2004).
[CrossRef] [PubMed]

M. Todorovic, S. Jiao, L. V. Wang, and G. Stoica, "Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography," Opt. Lett. 29, 2402-2404 (2004).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. Van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
[CrossRef] [PubMed]

M. J. Everett, K. Schoenenberger, B. W. Colston Jr., and L. B. Da Silva, "Birefringence characterization of biological tissue by use of optical coherence tomography," Opt. Lett. 23, 228-230 (1998).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal to noise ratio in spectral domain compared with time domain optical coherence tomography," Opt. Lett. 28, 2067- 2069 (2003).
[CrossRef] [PubMed]

Phys. Med. Biol.

M. Pircher, E. Goetzinger, R. Leitgeb, C. K. Hitzenberger: "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004).
[CrossRef] [PubMed]

Proc. SPIE

E. Götzinger, M. Pircher, M. Sticker, I. Dejaco-Ruhswurm, S. Kaminski, O. Findl, C. Skorpik, A.F. Fercher, and C.K. Hitzenberger, "Three dimensional polarization sensitive optical coherence tomography of normal and pathologic human cornea," Proc. SPIE 5140, 120-124 (2003).
[CrossRef]

B. Cense, T. C. Chen, M. Mujat, C. Joo, T. Akkin, B. H. Park, M. C. Pierce, A. Yun, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Spectral-domain polarization-sensitive optical coherence tomography at 850 nm", Proc. SPIE 5690, 159-162 (2005).
[CrossRef]

Prog. Opt.

A. F. Fercher and C. K. Hitzenberger, "Optical Coherence Tomography," Prog. Opt. 44, 215-302 (2002).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pufialito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other

B. E. Bouma and G. J. Tearney, Handbook of optical coherence tomography (Marcel Dekker, New York, 2002).

B. Cense, Optical coherence tomography for retinal imaging (PhD Dissertation, Twente University 2005).

R. N. Bracewell, The Fourier transform and its applications, 3rd ed. (McGraw-Hill, New York, 2000).

P. J. Tadrous (2002), <a href="http://www.bialith.com/">http://www.bialith.com/</a>.

Supplementary Material (3)

» Media 1: MOV (2589 KB)     
» Media 2: MOV (1206 KB)     
» Media 3: MOV (2233 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic drawing of spectral domain PS-OCT instrument. SLD, super luminescent diode; FC, fiber coupler; POL, polarizer; NPBS, non-polarizing beam splitter; VDF, variable density filter; QWP, quarter wave plate; M, mirror; SC, galvo scanner; L, lens; S, sample; PMF, polarization maintaining fiber; HWP, half wave plate; DG, diffraction grating; LSC, line scan camera.

Fig. 2.
Fig. 2.

Results of instrument calibration. A sample consisting of a wave plate and mirror was measured. Axis orientation and retardation are plotted as a function of path length difference. Within the desired measurement range of 2 mm, the axis drift stays within ± 3°.

Fig. 3.
Fig. 3.

B-scan images of human fovea in vivo. (a) Intensity (log scale); (b) retardation; (c) fast axis orientation. Image size: 3 mm (horizontal) × 0.75 mm (vertical). Values on color bars: degrees (to avoid erroneous birefringence data, areas below a certain intensity threshold are displayed in grey).

Fig. 4.
Fig. 4.

B-scan images of human optic nerve head in vivo. (a) Intensity (log scale); (b) retardation; (c) fast axis orientation. Image size: 3 mm (horizontal) × 1.75 mm (vertical). Values on color bars: degrees. Arrow: temporal rim of scleral canal.

Fig. 5.
Fig. 5.

B-scans superior to human optic nerve head in vivo. (a) Intensity (log scale); (b) retardation; (c) fast axis orientation. Image size: 3 mm (horizontal) × 1 mm (vertical). Values on color bars: degrees.

Fig. 6.
Fig. 6.

(2.5 MB) Frame no. 31 of fly-through movie of 3D dataset of human nerve head in vivo. Top: intensity; middle: retardation; bottom: axis orientation (color scales similar to Figs. 2–4). Image size: ~ 3mm (x) × 3mm (y) × 1.75mm (z).

Fig. 7.
Fig. 7.

(1.2 MB) Frame no. 4 of animation of a 3 dimensional volume rendered data set from a human nerve head in vivo. The opacity corresponds to the backscattered intensity, the retardation corresponds to the color coding (color coding similar to Figs. 2–4).

Fig. 8.
Fig. 8.

(2.2 MB) Frame no. 3 of animation of a 3 dimensional volume rendered data set from a human nerve head in vivo. The opacity corresponds to the backscattered intensity, the fast axis orientation corresponds to the color coding (color coding similar to Figs. 2–4).

Fig. 9.
Fig. 9.

PS-OCT axis orientation image of fovea centralis in vivo. The image illustrates the effect of translationally misaligned spectrometer cameras. Image size: ~ 3 mm (horizontal) × 0.75 mm (vertical).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A ˜ H , V ( z ) = A H , V ( z ) exp [ i Φ H , V ( z ) ]
R ( z ) [ A H ( z ) ] 2 + [ A V ( z ) ] 2
δ ( z ) = arctan [ A V ( z ) A H ( z ) ]
θ = 180 ° ΔΦ 2
FT 1 { I ( k ) } Γ ( z Δ z ) = A ( z Δ z ) exp [ i Φ ( z Δ z ) ] ,
FT 1 { I ( k δk ) } = exp ( i 2 π δk z ) FT 1 { I ( k ) } exp ( i 2 π δk z ) Γ ( z Δ z ) .
FT 1 { I ( k a ) } = 1 a FT 1 { I ( k a ) } 1 a Γ ( z a Δ z ) .

Metrics