Abstract

Electrochromic phenomena accompanying the ferroelectric domain inversion in congruent RuO2-doped z-cut LiNbO3 crystals at room temperature are observed in experiments. During the electric poling process, the electrochromism accompanies the ferroelectric domain inversion simultaneously in the same poled area. The electrochromism is completely reversible when the domain is inverted from the reverse direction. The influences of electric field and annealing conditions on domain inversion and electrochromism are also discussed. We propose the reasonable assumption that charge redistribution within the crystal structure caused by domain inversion is the source for electrochemically oxidation and reduction of Ru ion to produce the electrochromic effect.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. V. Ya. Shur, E. L. Rumyantsev, R. G. Batchko, G. D. Miller, M. M. Fejer, and R. L. Byer, "Physical basis of the domain engineering in the bulk ferroelectrics," Ferroelectrics 221, 157-167 (1999).
    [CrossRef]
  2. C. Chiang, Y. Y. Lin, T. D. Wang, and Y. C. Huang, "Distributed-feedback optical parametric oscillation by use of a photorefractive grating in periodically poled lithium niobate," Opt. Lett. 27, 1815-1817 (2002).
    [CrossRef]
  3. D. W. Chen and K. Masters, "Continuous-wave 4.3-µm intracavity difference frequency generation in an optical parametric oscillator," Opt. Lett. 26, 25-27 (2001)
    [CrossRef]
  4. Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
    [CrossRef]
  5. K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, H. Ito, "Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate," Opt. Lett. 25, 1714-1716, (2000)
    [CrossRef]
  6. R. W. Eason, A. J. Boyland, S. Mailis and P. G. R. Smith, "Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3," Opt. Commun. 197, 201-207 (2001).
    [CrossRef]
  7. M. Yamada, M. Saitoh and H. Ooki, "Electric-field induced cylindrical lens,switching and deflection devices composed of the inverted domains in LiNbO3 crystals," Appl. Phys. Lett. 69, 3659-3661 (1996).
    [CrossRef]
  8. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
    [CrossRef]
  9. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, D. C. Hanna, "Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal," Phys. Rev. Lett. 84, 4345-4348 (2000).
    [CrossRef] [PubMed]
  10. A. Kuroda, S. Kurimura and Y. Uesu, "Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields," Appl. Phys. Lett. 69, 1565-1567 (1996).
    [CrossRef]
  11. K. Nakamura, J. Kurz, K. Parameswaran, and M. M. Fejer, "Periodic poling of magnesium-oxide-doped lithium niobate," J. Appl. Phys. 91, 4528-4534 (2002).
    [CrossRef]
  12. H. Ishizuki, I. Shoji and T. Taira, "Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature," Appl. Phys. Lett. 82, 4062-4064 (2003).
    [CrossRef]
  13. L.-H. Peng, Y.-C. Zhang, and Y.-C. Lin, "Zinc oxide doping effects in polarization switching of lithium niobate," Appl. Phys. Lett. 78, 4-6 (2001).
    [CrossRef]
  14. B. W. Faughnan, R. S. Crandall, P. M. Heyman, "Electrochromism in tungsten (VI) oxide amorphous films," RCA Review, 36, 177-197 (1975)
  15. S. Gottesfeld, J. D. E. McIntyre, G. Beni, and J. L. Shay, "Electrochromism in anodic iridium oxide films," Appl. Phys. Lett. 33, 208-210 (1978).
    [CrossRef]
  16. M. Grätzel, "Ultrafast colour displays," Nature 409, 575-576 (2001).
    [CrossRef] [PubMed]
  17. Q. X. Xi, D. A. Liu, Y. N. Zhi, Z. Luan, and L. R. Liu, "Reversible electrochromic effect accompanying domain-inversion in LiNbO3:Ru:Fe crystals." Appl. Phys. Lett. 87, 121103-121105 (2005).
    [CrossRef]
  18. S. H. Lee, P. Liu, H. M. Cheong, C. Edwin Tracy, S. K. Deb, "Electrochromism of amorphous ruthenium oxide thin films," Solid State Ionic 165, 217-221 (2003).
    [CrossRef]
  19. V. Gopalan, T. E. Mitchell, K. E. Sicakfus, "Switching kinetics of 180° domains in congruent LiNbO3 and LiTaO3 crystals," Solid State Commun. 109, 111-117 (1999).
    [CrossRef]
  20. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
    [CrossRef]
  21. M. C. Wengler, M. Müller, E. Soergel, and K. Buse, "Poling dynamics of lithium niobate crystals," Appl. Phys. B 76, 393-396 (2003).
    [CrossRef]
  22. M. Müller, E. Soergel, and K. Buse, "Visualization of ferroelectric domains with coherent light," Opt. Lett. 28, 2515-2517 (2003).
    [CrossRef] [PubMed]
  23. S. Grilli, P. Ferraro, M. Paturzo, D. Alfieri, and P. D. Natale, "In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystal by digital holography," Opt. Express 12, 1832-1842 (2004), <a href= "http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-9-1832">http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-9-1832</a>.
    [CrossRef] [PubMed]
  24. V. Marinova, M. L. Hsieh, S. H. Lin, K. Y. Hsu, "Effect of ruthenium doping on the optical and photorefractive properties of Bi12TiO20 single crystals." Opt. Commun. 203, 377-384 (2002).
    [CrossRef]

Appl. Phys. B

M. C. Wengler, M. Müller, E. Soergel, and K. Buse, "Poling dynamics of lithium niobate crystals," Appl. Phys. B 76, 393-396 (2003).
[CrossRef]

Appl. Phys. Lett.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
[CrossRef]

M. Yamada, M. Saitoh and H. Ooki, "Electric-field induced cylindrical lens,switching and deflection devices composed of the inverted domains in LiNbO3 crystals," Appl. Phys. Lett. 69, 3659-3661 (1996).
[CrossRef]

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

A. Kuroda, S. Kurimura and Y. Uesu, "Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields," Appl. Phys. Lett. 69, 1565-1567 (1996).
[CrossRef]

H. Ishizuki, I. Shoji and T. Taira, "Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature," Appl. Phys. Lett. 82, 4062-4064 (2003).
[CrossRef]

L.-H. Peng, Y.-C. Zhang, and Y.-C. Lin, "Zinc oxide doping effects in polarization switching of lithium niobate," Appl. Phys. Lett. 78, 4-6 (2001).
[CrossRef]

S. Gottesfeld, J. D. E. McIntyre, G. Beni, and J. L. Shay, "Electrochromism in anodic iridium oxide films," Appl. Phys. Lett. 33, 208-210 (1978).
[CrossRef]

Q. X. Xi, D. A. Liu, Y. N. Zhi, Z. Luan, and L. R. Liu, "Reversible electrochromic effect accompanying domain-inversion in LiNbO3:Ru:Fe crystals." Appl. Phys. Lett. 87, 121103-121105 (2005).
[CrossRef]

Ferroelectrics

V. Ya. Shur, E. L. Rumyantsev, R. G. Batchko, G. D. Miller, M. M. Fejer, and R. L. Byer, "Physical basis of the domain engineering in the bulk ferroelectrics," Ferroelectrics 221, 157-167 (1999).
[CrossRef]

J. Appl. Phys.

K. Nakamura, J. Kurz, K. Parameswaran, and M. M. Fejer, "Periodic poling of magnesium-oxide-doped lithium niobate," J. Appl. Phys. 91, 4528-4534 (2002).
[CrossRef]

Nature

M. Grätzel, "Ultrafast colour displays," Nature 409, 575-576 (2001).
[CrossRef] [PubMed]

Opt. Commun.

R. W. Eason, A. J. Boyland, S. Mailis and P. G. R. Smith, "Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3," Opt. Commun. 197, 201-207 (2001).
[CrossRef]

V. Marinova, M. L. Hsieh, S. H. Lin, K. Y. Hsu, "Effect of ruthenium doping on the optical and photorefractive properties of Bi12TiO20 single crystals." Opt. Commun. 203, 377-384 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, D. C. Hanna, "Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal," Phys. Rev. Lett. 84, 4345-4348 (2000).
[CrossRef] [PubMed]

RCA Review

B. W. Faughnan, R. S. Crandall, P. M. Heyman, "Electrochromism in tungsten (VI) oxide amorphous films," RCA Review, 36, 177-197 (1975)

Solid State Commun.

V. Gopalan, T. E. Mitchell, K. E. Sicakfus, "Switching kinetics of 180° domains in congruent LiNbO3 and LiTaO3 crystals," Solid State Commun. 109, 111-117 (1999).
[CrossRef]

Solid State Ionic

S. H. Lee, P. Liu, H. M. Cheong, C. Edwin Tracy, S. K. Deb, "Electrochromism of amorphous ruthenium oxide thin films," Solid State Ionic 165, 217-221 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic view of the experimental facility

Fig. 2.
Fig. 2.

Observation of the crystal after forward poling. The poled area (central area) is “bleached” during the forward poling, and correspondent with the shape of liquid electrode which is distorted a little by extrusion of the silicon gaskets. After reverse poling the poled area is “colored” again and there is no contrast between central area and edge area

Fig. 3.
Fig. 3.

Comparison of the transmission spectrum among three different states during a poling cycle: virgin state, after forward poling and after reverse poling.

Fig. 4.
Fig. 4.

Change of transmission spectrum induced by annealing treatment at 150 °C for different time. The comparison is among virgin state, after poling, after poling and annealing for 18 hours, and after poling and annealing for 32 hours

Fig. 5.
Fig. 5.

Real-time visualization of the transmitting coherent optical field at 633nm wavelength through a lens. The hexagonal shape discontinuity (marked by the dash line) represents the domain boundary. The domain boundary is expanding outside

Fig. 6.
Fig. 6.

Domain boundary between two areas with opposite polarization state and different color after being etched in hydrofluoric acid. The left area is poled and bleached, and the right area is not poled

Fig. 7.
Fig. 7.

Finer Structure of ferroelectric domain with hexagonal shape boundary after being etched in hydrofluoric acid. The dimension magnitude of domain is 1 μm.

Fig. 8
Fig. 8

(a). Transmissivity change of collimated light at 514nm wavelength which is illuminating entire electrode area (square dot) and the change of poling current (circle dot) during forward poling with constant voltage of 9.8kV

Fig. 8
Fig. 8

(b). Transmissivity change of collimated light at 514nm wavelength (square dot), and change of poling current (circle dot) during reverse poling with constant voltage of 7.6kV

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ru 4 + + e Ru 3 +
Ru 3 + e Ru 4 +

Metrics