Abstract

An efficient multi-frequency extracavity Raman laser for nanosecond pulses was realized by taking advantage of the anisotropic optical property of the KGd(WO4)2 crystal. The conversion efficiencies of the converter were investigated versus the pump pulse energy, pump polarization, and output coupling rate experimentally and theoretically. Based on the coupled radiation transfer equations, a theoretical model was deduced to predict the performance of solid-state extracavity Raman lasers. This model was solved numerically to analyze the operation of the extracavity Raman laser with the KGd(WO4)2 crystal, and the numerical results had a good agreement with the experimental ones.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii, and V. E. Yakobson, "Physical, chemical and optical properties of barium nitrate Raman crystal," Opt. Mater. 11, 315-334 (1999).
    [CrossRef]
  2. T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, "Raman spectroscopy of crystals for stimulated Raman scattering," Opt. Mater. 11, 307-314 (1999).
    [CrossRef]
  3. T. T. Basiev, A. A. Sobol, Y. K. Voronko, and P. G. Zverev, "Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers," Opt. Mater. 15, 205-216 (2000).
    [CrossRef]
  4. A. A. Kaminskii, K. I. Ueda, H .J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4-new efficient х(3)-materials for Raman lasers," Opt. Commun. 194, 201-206 (2001).
    [CrossRef]
  5. H. M. Pask, "Review design and operation of solid-state Raman lasers," Prog. Quantum Electron. 27, 3-56 (2003).
    [CrossRef]
  6. P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, "Solid state lasers with Raman frequency conversion," Prog. Quantum Electron. 28, 113-143 (2004).
    [CrossRef]
  7. H. M. Pask, S. Myers, and J. A. Piper, "High average power, all-solid-state external resonator Raman laser," Opt. Lett. 28, 435-437 (2003).
    [CrossRef] [PubMed]
  8. C. He and T. H. Chyba, "Solid-state barium nitrate Raman laser in the visible region," Opt. Commun. 135, 273-278 (1997).
    [CrossRef]
  9. P. G. Zverev, T. T. Basiev, and A. M. Prokhorov, "Stimulated Raman scattering of laser radiation in Raman crystals", Opt. Mater. 11, 335-352 (1999).
    [CrossRef]
  10. R. P. Mildddren, M. Convery, H. M. Pask, and J. A. Piper, "Efficient, all-solid-state, Raman laser in the yellow, orange and red," Opt. Express 12, 785-790 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-785.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-785.</a>
    [CrossRef]
  11. Y. R. Shen and N. Bloembergen, "Theory of stimulated Brillouin and Raman scattering," Phys. Rev. 137, 1787-1805 (1965).
    [CrossRef]
  12. D. von der Linde, M. Maier, and W. Kaiser, "Quantitative investigations of the Stimulated Raman effect using subnanosecond light pulses," Phys. Rev. 178, 11-17 (1969).
    [CrossRef]
  13. P. Cerny and H. Jelinkova, "Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal," Opt. Lett. 27, 360-362 (2002).
    [CrossRef]
  14. J. T. Murray, W. L. Austin, and R. C. Powell, "Intracavity Raman conversion and Raman beam cleanup," Opt. Mater. 11, 353-371 (1999).
    [CrossRef]
  15. A. Major, J. S. Aitchison, and P. W. E. Smith, "Efficient Raman shifting of high-energy picosecond pulses into the eye-safe 1.5-µm spectral region by use of a KGd(WO4)2 crystal," Opt. Lett. 30, 421-423 (2005).
    [CrossRef] [PubMed]
  16. J. Findeisen, H. J. Eichler, and A. A. Kaminskii, "Efficient picosecond PbWO4 and two-wavelength KGd(WO4)2 Raman lasers in the IR and visible," IEEE J. Quantum Electron. 35, 173-178 (1999).
    [CrossRef]
  17. T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, "Efficient 1181nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser," Opt. Commun. 232, 327-331 (2004).
    [CrossRef]
  18. M. Matsuse, T. Deguchi, H. Ohtsuka, N. Takeyasu, Y. Hirakawa, and T. Imasaka, "Effect of laser pulsewidth on the generation of multi-color laser emission by stimulated Raman scattering and four-wave Raman mixing in a KGd(WO4)2 crystal," Opt. Commun. 223, 411-416 (2003).
    [CrossRef]
  19. I. V. Mochalov, "Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd)," Opt. Eng. 36, 1660-1669 (1997).
    [CrossRef]
  20. J. C. Damen, S. P. S. Porto, and B. Tell, "Raman effect in Zinc Oxide," Phys. Rev. 142, 570-574 (1966).
    [CrossRef]
  21. Y. R. Shen, The Principles of Nonlinear Optics, (Wiley, New York, 1984).
  22. A. K. Kazzaz, S. Ruschin, I. Shoshan, and G. Ravnitsky, "Stimulated Raman scattering in Methane-Experimental optimization and numerical model," IEEE J. Quantum Electron. 30, 3017-3024 (1994).
    [CrossRef]
  23. A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, "High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals," Opt. Commun. 183, 277-287 (2000).
    [CrossRef]
  24. V. A. Berenberg, S. N. Karpukhin, and I. V. Mochalov, "Stimulated Raman scattering of nanosecond pulses in a KGd(WO4)2 crystal," Sov. J. Quantum Electron. 17, 1178-1179 (1987).
    [CrossRef]

IEEE J. Quantum Electron.

J. Findeisen, H. J. Eichler, and A. A. Kaminskii, "Efficient picosecond PbWO4 and two-wavelength KGd(WO4)2 Raman lasers in the IR and visible," IEEE J. Quantum Electron. 35, 173-178 (1999).
[CrossRef]

A. K. Kazzaz, S. Ruschin, I. Shoshan, and G. Ravnitsky, "Stimulated Raman scattering in Methane-Experimental optimization and numerical model," IEEE J. Quantum Electron. 30, 3017-3024 (1994).
[CrossRef]

Opt. Commun.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, "High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals," Opt. Commun. 183, 277-287 (2000).
[CrossRef]

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, "Efficient 1181nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser," Opt. Commun. 232, 327-331 (2004).
[CrossRef]

M. Matsuse, T. Deguchi, H. Ohtsuka, N. Takeyasu, Y. Hirakawa, and T. Imasaka, "Effect of laser pulsewidth on the generation of multi-color laser emission by stimulated Raman scattering and four-wave Raman mixing in a KGd(WO4)2 crystal," Opt. Commun. 223, 411-416 (2003).
[CrossRef]

A. A. Kaminskii, K. I. Ueda, H .J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4-new efficient х(3)-materials for Raman lasers," Opt. Commun. 194, 201-206 (2001).
[CrossRef]

C. He and T. H. Chyba, "Solid-state barium nitrate Raman laser in the visible region," Opt. Commun. 135, 273-278 (1997).
[CrossRef]

Opt. Eng.

I. V. Mochalov, "Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd)," Opt. Eng. 36, 1660-1669 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

P. G. Zverev, T. T. Basiev, and A. M. Prokhorov, "Stimulated Raman scattering of laser radiation in Raman crystals", Opt. Mater. 11, 335-352 (1999).
[CrossRef]

P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii, and V. E. Yakobson, "Physical, chemical and optical properties of barium nitrate Raman crystal," Opt. Mater. 11, 315-334 (1999).
[CrossRef]

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, "Raman spectroscopy of crystals for stimulated Raman scattering," Opt. Mater. 11, 307-314 (1999).
[CrossRef]

T. T. Basiev, A. A. Sobol, Y. K. Voronko, and P. G. Zverev, "Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers," Opt. Mater. 15, 205-216 (2000).
[CrossRef]

J. T. Murray, W. L. Austin, and R. C. Powell, "Intracavity Raman conversion and Raman beam cleanup," Opt. Mater. 11, 353-371 (1999).
[CrossRef]

Phys. Rev.

Y. R. Shen and N. Bloembergen, "Theory of stimulated Brillouin and Raman scattering," Phys. Rev. 137, 1787-1805 (1965).
[CrossRef]

D. von der Linde, M. Maier, and W. Kaiser, "Quantitative investigations of the Stimulated Raman effect using subnanosecond light pulses," Phys. Rev. 178, 11-17 (1969).
[CrossRef]

J. C. Damen, S. P. S. Porto, and B. Tell, "Raman effect in Zinc Oxide," Phys. Rev. 142, 570-574 (1966).
[CrossRef]

Prog. Quantum Electron.

H. M. Pask, "Review design and operation of solid-state Raman lasers," Prog. Quantum Electron. 27, 3-56 (2003).
[CrossRef]

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, "Solid state lasers with Raman frequency conversion," Prog. Quantum Electron. 28, 113-143 (2004).
[CrossRef]

Sov. J. Quantum Electron.

V. A. Berenberg, S. N. Karpukhin, and I. V. Mochalov, "Stimulated Raman scattering of nanosecond pulses in a KGd(WO4)2 crystal," Sov. J. Quantum Electron. 17, 1178-1179 (1987).
[CrossRef]

Other

Y. R. Shen, The Principles of Nonlinear Optics, (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematics of the extracavity Raman laser

Fig. 2.
Fig. 2.

Unit cell of KGW, constructed on W atoms. The positions of the crystallographic axes a, b and c are given relative to the optical indicatrix axes. α=γ=90°, β≠ 90°.

Fig. 3.
Fig. 3.

Experimental arrangement, showing the pump laser, coupling optics, and external Raman resonator.

Fig. 4.
Fig. 4.

Conversion efficiency versus the pump pulse energy with the No.1 output coupler for the Nm -polarized pumping (a) and Ng -polarized pumping (b). Solid lines represent the calculated results of the first Stokes, dash lines those of the second Stokes, doted line that of the third Stokes. The solid squares stand for the experimental results of the first Stokes, and the open squares those of the second Stokes.

Fig. 5.
Fig. 5.

Same as Fig. 4 except for with the No.2 output coupler.

Fig. 6.
Fig. 6.

Same as Fig. 4 except for with the No.3 output coupler.

Fig. 7.
Fig. 7.

Dependence of the conversion efficiency of the first Stokes on the pump polarization with the pump pulse energy Ep =23 mJ and No.2 output coupler. The solid squares represent the experimental results, and the line the calculated one.

Tables (3)

Tables Icon

Table 1. The reflectivities of the output couplers at the pump and Stokes beams with 768cm-1 Raman shift for Ng -polarized pumping

Tables Icon

Table 2. The reflectivities of the output couplers at the Stokes beams with 901cm-1 Raman shift for Nm -polarized pumping

Tables Icon

Table 3. The parameters for the theoretical calculation [5]

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

n c I L t + d I L dz = g 0 I 1 I L α I L ,
n c I 1 t + d I 1 dz = g 1 I 1 ( I L I 2 ) + K sp I L α I 1 ,
n c I 2 t + d I 2 dz = g 2 I 2 ( I 1 I 3 ) + K sp I 1 α I 2 ,
n c I 3 t + d I 3 dz = g 3 I 2 I 3 + K sp I 2 α I 3 .
n ( z ) c I L ± t ± I L ± z = g 0 ( z ) I L ± ( I 1 + + I 1 ) α I L ± ,
n ( z ) c I 1 ± t ± I 1 ± z = g 1 ( z ) I 1 ± [ ( I L + + I L ) ( I 2 + + I 2 ) ] α I 1 ± + K sp ( z ) ( I L + + I L ) ,
n ( z ) c I 2 ± t ± I 2 ± z = g 2 ( z ) I 2 ± [ ( I 1 + + I 1 ) ( I 3 + + I 3 ) ] α I 2 ± + K sp ( z ) ( I 1 + + I 1 ) ,
n ( z ) c I 3 ± t ± I 3 ± z = g 3 ( z ) I 3 ± ( I 2 + + I 2 ) α I 3 ± + K sp ( z ) ( I 2 + + I 2 ) ,
n ( z ) = { 1 in the air n in the Raman crystal ,
g i ( z ) = { 0 in the air g i in the Raman crystal ,
K sp ( z ) = { 0 in the air K sp in the Raman crystal ,
I i + t 0 = R i 2 I i t 0 ( i = 1,2,3 ) ,
I L + t 0 = T L I L ( t ) ,
I i t l c = R i 1 I i + t l c ( i = L , 1,2,3 ) ,

Metrics