Abstract

The integration of optical functionalities on a chip has been a long standing goal in the optical community. Given the call for more integration, Silicon-on-Insulator (SOI) is a material system of great interest. Although mature CMOS technology can be used for the fabrication of passive optical functionality, particular photonic functions like efficient light emission still require III-V semiconductors. We present the technology for heterogeneous integration of III-V semiconductor optical components and SOI passive optical components using benzocyclobutene (BCB) die to wafer bonding. InP/InGaAsP photodetectors on SOI waveguide circuits were fabricated. The developed process is compatible with the fabrication of InP/InGaAsP light emitters on SOI.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Vanthourhout. "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," IEEE J. Lightwave Technol. 23, 401-412 (2005).
    [CrossRef]
  2. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photonics Technol. Lett. 16, 1328-1330 (2004).
    [CrossRef]
  3. Z. Yu, R. Droopad, D. Jordan, J. Curless, Y. Liang, C. Overgaard, H. Li, A. Talin, T. Eschrich, B. Craigo, K. Eisenbeiser, R. Emrick, J. Finder, X. Hu, Y. Wei, J. Edwards, D. Convey, K. Moore, D. Marshall, J. Ramdani, L. Tisinger, W. Ooms, M. O'Steen, F. Towner, and T. Hierl, "GaAs-based heterostructures on silicon," GaAs Manufacturing Technol., paper 13E (2002).
  4. Y. T. Sun, K. Baskar, and S. Lourdudoss, "Thermal strain in Indium Phosphide on Silicon obtained by epitaxial lateral overgrowth," J. Appl. Phys. 94, 2746-2748 (2003).
    [CrossRef]
  5. O. I. Dusumnu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Ünlü, "High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550nm operation", IEEE Photonics Technol. Lett. 17, 175-177 (2005).
    [CrossRef]
  6. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
    [CrossRef] [PubMed]
  7. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55μm," Electron. Lett. 37, 764-765 (2001).
    [CrossRef]
  8. F. Niklaus, P. Enoksson, E. Kalvesten, and G. Stemme, "Void-free full wafer adhesive bonding," 13th annual conference on MEMS, 247-252 (2000)
  9. G. Roelkens, D. Van Thourhout, and R. Baets, "Heterogeneous integration of III-V membrane devices and ultracompact SOI waveguides," LEOS Summer Topicals, 23-24 (2004)
  10. available from <a href="http://camfr.sourceforge.net"> http://camfr.sourceforge.net</a>
  11. D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
    [CrossRef]
  12. I. Christiaens, G. Roelkens, K. De Mesel, D. Van Thourhout, and R. Baets, "Thin film devices fabricated with BCB wafer bonding," IEEE J. Lightwave Technol. 23, 517-522 (2005).
    [CrossRef]

Electron. Lett. (1)

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55μm," Electron. Lett. 37, 764-765 (2001).
[CrossRef]

IEEE J. Lightwave Technol. (2)

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Vanthourhout. "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," IEEE J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

I. Christiaens, G. Roelkens, K. De Mesel, D. Van Thourhout, and R. Baets, "Thin film devices fabricated with BCB wafer bonding," IEEE J. Lightwave Technol. 23, 517-522 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photonics Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

O. I. Dusumnu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Ünlü, "High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550nm operation", IEEE Photonics Technol. Lett. 17, 175-177 (2005).
[CrossRef]

J. Appl. Phys. (1)

Y. T. Sun, K. Baskar, and S. Lourdudoss, "Thermal strain in Indium Phosphide on Silicon obtained by epitaxial lateral overgrowth," J. Appl. Phys. 94, 2746-2748 (2003).
[CrossRef]

Nature (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Other (4)

Z. Yu, R. Droopad, D. Jordan, J. Curless, Y. Liang, C. Overgaard, H. Li, A. Talin, T. Eschrich, B. Craigo, K. Eisenbeiser, R. Emrick, J. Finder, X. Hu, Y. Wei, J. Edwards, D. Convey, K. Moore, D. Marshall, J. Ramdani, L. Tisinger, W. Ooms, M. O'Steen, F. Towner, and T. Hierl, "GaAs-based heterostructures on silicon," GaAs Manufacturing Technol., paper 13E (2002).

F. Niklaus, P. Enoksson, E. Kalvesten, and G. Stemme, "Void-free full wafer adhesive bonding," 13th annual conference on MEMS, 247-252 (2000)

G. Roelkens, D. Van Thourhout, and R. Baets, "Heterogeneous integration of III-V membrane devices and ultracompact SOI waveguides," LEOS Summer Topicals, 23-24 (2004)

available from <a href="http://camfr.sourceforge.net"> http://camfr.sourceforge.net</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Proposed process flow for heterogeneous integration of III-V semiconductors and SOI waveguide circuitry

Fig. 2.
Fig. 2.

Coupling scheme for III-V photodetectors bonded to SOI waveguide circuitry

Fig. 3.
Fig. 3.

Simulation of the light diffraction from the SOI waveguide towards the III-V photodetector

Fig. 4.
Fig. 4.

Influence of BCB bonding layer thickness and SiO2 buffer layer thickness on detector efficiency (a) and the influence of device length in the optimum parameter case (b)

Fig. 5.
Fig. 5.

Wavelength dependence of the absorbed power fraction in the detector and reflected power back into the SOI waveguide. A 50μm long device and optimum SiO2 buffer layer thickness and BCB bonding layer thickness are assumed. The wavelength dependence of the InGaAs absorption coefficient is also shown.

Fig. 6.
Fig. 6.

Top view of the fabricated structure before top contact definition. Grating couplers, detector mesas, SOI waveguides and bottom contacts are visible.

Fig. 7.
Fig. 7.

Simulated absorbed power fraction in the fabricated devices (120nm InGaAsP absorbing layer, 10μm device length, 1μm SiO2 buried oxide layer thickness and 3μm BCB bonding layer thickness)

Fig. 8.
Fig. 8.

Response of 4 photodiodes integrated onto a 4 racetrack resonator filter (a) and an SEM view of the fabricated SOI waveguide structure (b)

Fig. 9.
Fig. 9.

Measured photocurrent from a 6 resonator device acting as a bandpass/bandstop filter

Metrics