Abstract

An all-silicon in-plane micron-size electrically driven resonant cavity light emitting device (RCLED) based on slotted waveguide is proposed and modeled. The device consists of a microring resonator formed by Si/SiO2 slot-waveguide with a low-index electroluminescent material (erbium-doped SiO2) in the slot region. The geometry of the slot-waveguide permits the definition of a metal-oxide-semiconductor (MOS) configuration for the electrical excitation of the active material. Simulations predict a quality factor Q of 6,700 for a 20-μm-radius electrically driven microring RCLED capable to operate at a very low bias current of 0.75 nA. Lasing conditions are also discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  2. A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator base don a metal oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
    [CrossRef] [PubMed]
  3. Q. Xu, B. Schmitdt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  4. K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta and P. M. Fauchet, "Silicon-based visible light-emitting devices integrated into microelectronics circuits," Nature 348, 338-341 (1996).
    [CrossRef]
  5. R. J. Walters, G. I. Bourianoff and H. A. Atwater, "Field-effect electroluminescence in silicon nanocrystals," Nature Materials 4, 143-146 (2005).
    [CrossRef] [PubMed]
  6. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269</a>.
    [CrossRef] [PubMed]
  7. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
    [CrossRef] [PubMed]
  8. M. E. Castagna, S. Coffa, M. Monaco, A. Muscara, L. Caristia, S. Lorenti, and A. Messina, "High efficiency light emitting devices in silicon," Mater. Sci. Eng. B 105, 83-90 (2003).
    [CrossRef]
  9. V. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett., 29 , 1209-1211 (2004).
    [CrossRef] [PubMed]
  10. T. Baehr-Jones, M. Hochberg, C. Walker, A Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
    [CrossRef]
  11. C. A. Barrios, V. R. A. R. Panepucci and M. Lipson, Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices," J. Lightwave Technol. 21, 2332-2339 (2003).
    [CrossRef]
  12. <a href= "http://www.rsoftinc.com/fullwave.htm">http://www.rsoftinc.com/fullwave.htm</a>
  13. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett., 36, 321-322 (2000).
    [CrossRef]
  14. R. A. Soref and B. R. Bennett, "Kramers-Kronig analysis of E-O switching in silicon," SPIE Integr. Opt. Circuit Eng., 704, 1986.
  15. P. G. Kik and A. Polman, "Erbium doped optical waveguide amplifiers on silicon," Materials Research Society Bulletin 23(4), 48 (1998).
  16. SILVACO International. 4701 Patrick Henry Drive, Bldg.1, Santa Clara, CA 94054.
  17. M. Lipson, T. Chen, K. Chen, X. Duan, and L. C. Kimerling, "Erbium in Si-based light confining structures," Mater. Sci. Eng. B 81, 36-39 (2001).
    [CrossRef]
  18. A. Polman, B. Min, J. Kalkman, T. J, Kippenberg, and K. J. Vahala, "Ultra-low threshold erbium-implanted toroidal microlaser on silicon," Appl. Phys. Lett. 84, 1037-1039 (2004).
    [CrossRef]
  19. P. Koonath, T. Indukuri, and B. Jalali, "Vertically-coupled micro-resonators realized using three-dimensional sculpting in silicon," Appl. Phys. Lett. 85, 1018-1020 (2004).
    [CrossRef]
  20. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express, 13, 3129-3135 (2005). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3129">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3129</a>
    [CrossRef] [PubMed]
  21. M. K. Emsley, O. Dosunmu, and M. S. Ünlü, "Silicon substrates with buried distributed Bragg reflectors for resonant cavity-enhanced optoelectronics," IEEE J. Selected Top. Quantum Electron. 8, 949-955 (2002).
    [CrossRef]
  22. M. Gnan, H. M. H. Chong, S. S Kim, A. C. Bryce, M. Sorel, and R. M. De La Rue, "Coupled microcavity in photonic wire Bragg grating," Conference on Lasers and Electro Optics (CLEO), paper CWG7, San Francisco, 2004.
  23. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall modal volumes in dielectric optical microcavities," Phys. Rev. Lett., 95, 143901 (2005).
    [CrossRef] [PubMed]

Appl. Phys. Lett. (3)

T. Baehr-Jones, M. Hochberg, C. Walker, A Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

A. Polman, B. Min, J. Kalkman, T. J, Kippenberg, and K. J. Vahala, "Ultra-low threshold erbium-implanted toroidal microlaser on silicon," Appl. Phys. Lett. 84, 1037-1039 (2004).
[CrossRef]

P. Koonath, T. Indukuri, and B. Jalali, "Vertically-coupled micro-resonators realized using three-dimensional sculpting in silicon," Appl. Phys. Lett. 85, 1018-1020 (2004).
[CrossRef]

CLEO 2004 (1)

M. Gnan, H. M. H. Chong, S. S Kim, A. C. Bryce, M. Sorel, and R. M. De La Rue, "Coupled microcavity in photonic wire Bragg grating," Conference on Lasers and Electro Optics (CLEO), paper CWG7, San Francisco, 2004.

Electron. Lett. (1)

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett., 36, 321-322 (2000).
[CrossRef]

IEEE J. Selected Top. Quantum Electron. (1)

M. K. Emsley, O. Dosunmu, and M. S. Ünlü, "Silicon substrates with buried distributed Bragg reflectors for resonant cavity-enhanced optoelectronics," IEEE J. Selected Top. Quantum Electron. 8, 949-955 (2002).
[CrossRef]

J. Lightwave Technol. (1)

Mater. Sci. Eng. B (2)

M. Lipson, T. Chen, K. Chen, X. Duan, and L. C. Kimerling, "Erbium in Si-based light confining structures," Mater. Sci. Eng. B 81, 36-39 (2001).
[CrossRef]

M. E. Castagna, S. Coffa, M. Monaco, A. Muscara, L. Caristia, S. Lorenti, and A. Messina, "High efficiency light emitting devices in silicon," Mater. Sci. Eng. B 105, 83-90 (2003).
[CrossRef]

Materials Research Society Bulletin (1)

P. G. Kik and A. Polman, "Erbium doped optical waveguide amplifiers on silicon," Materials Research Society Bulletin 23(4), 48 (1998).

Nature (5)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator base don a metal oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Q. Xu, B. Schmitdt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta and P. M. Fauchet, "Silicon-based visible light-emitting devices integrated into microelectronics circuits," Nature 348, 338-341 (1996).
[CrossRef]

Nature Materials (1)

R. J. Walters, G. I. Bourianoff and H. A. Atwater, "Field-effect electroluminescence in silicon nanocrystals," Nature Materials 4, 143-146 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall modal volumes in dielectric optical microcavities," Phys. Rev. Lett., 95, 143901 (2005).
[CrossRef] [PubMed]

SPIE Integr. Opt. Circuit Eng. (1)

R. A. Soref and B. R. Bennett, "Kramers-Kronig analysis of E-O switching in silicon," SPIE Integr. Opt. Circuit Eng., 704, 1986.

Other (2)

SILVACO International. 4701 Patrick Henry Drive, Bldg.1, Santa Clara, CA 94054.

<a href= "http://www.rsoftinc.com/fullwave.htm">http://www.rsoftinc.com/fullwave.htm</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic top view of an electrically-driven microring light emitting device based on Si/SiO2 slot-waveguides. (b) Schematic cross-sectional view of the MOS slot-waveguide that forms the ring. The dashed blue arrows indicate the flow of electrical current when the device is biased (Vanode-Vcathode>0).

Fig. 2.
Fig. 2.

Transverse E-field amplitude (contour) of the quasi-TE optical mode.

Fig. 3.
Fig. 3.

Transverse E-field amplitude (contour) of the quasi-TE optical mode for a bent slot-waveguide turning to the left (-x axis) with a radius of curvature of 20 μm.

Fig. 4.
Fig. 4.

Calculated spectral transmittance of the ring resonator shown in Fig. 1(a). The quality factor Q is 6,700.

Fig. 5.
Fig. 5.

(a) 2-D distribution of the applied electric field for a bias voltage of 55 V. (b) 2-D profile of the applied electric field.

Fig. 6.
Fig. 6.

(a) Schematic cross-sectional view of a horizontal MOS slot-waveguide. The dashed blue arrows indicate the flow of injected electrons through the active gate oxide. (b) Transverse E-field amplitude (contour) of the quasi-TM optical mode.

Fig. 7.
Fig. 7.

Fabry-Perot microcavity LED based on a slot-waveguide. Two DBRs defined the resonant structure. A MOS diode is defined in the cavity region for electrical pumping of the active material.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n = Δ n e + Δ n h = [ 8.8 × 10 22 Δ N + 8.5 × 10 18 ( Δ P ) 0.8 ]
Δ α = Δ α e + Δ α h = 8.5 × 10 18 Δ N + 6.0 × 10 18 Δ P

Metrics