Abstract

A system based on a picosecond time-gated image intensifier is proposed for non-contact testing of CMOS circuits. The apparatus allows one to record the temporal evolution of the luminescence emitted during transistor switching as a function of the position inside the chip. The system is characterized by an intrinsic parallelism in the spatial dimensions. This feature is noticeable for studying wide sections of complex circuits, like microprocessors and random access memories, where multiple electrical events occur simultaneously. Experiments on a CMOS inverter chain and on a static memory have been carried out, in order to demonstrate the applicability of a picosecond time-gated imager to circuit analysis.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. T. L. Thong, Electron Beam Testing Technology (Plenum, New York, 1993).
  2. M. Paniccia, R. M. Rao, and W. M. Yee, "Optical probing of flip chip packaged microprocessors," J. Vac. Sci. Technol. B 16, 3625-3630 (1998).
    [CrossRef]
  3. R. Desplats, F. Beaudoin, P. Perdu, P. Poirier, D. Tremouilles, M. Bafleur, and D. Lewis, "Backside localization of current leakage faults using thermal laser stimulation," Microelectronics Reliability 41, 1539-1544 (2001).
    [CrossRef]
  4. The National Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, 1993).
  5. S. Tam, and C. Hu, "Hot electron induced photon and photocarrier generation in silicon MOSFET's," IEEE Trans. Electron Devices ED-31, 1264-1273 (1984).
    [CrossRef]
  6. Y. Uraoka, N. Tsustsu, T. Morii, and K. Tsuji, "Hot carrier evaluation of MOSFET's in ULSI circuits using the photon emission method," IEEE Trans. Electron Devices 40, 1426-1431 (1993).
    [CrossRef]
  7. S. Villa, A. Lacaita, and A. Pacelli, "Photon emission from hot electrons in silicon," Phys Rev. 52, 10992-10999 (1995).
  8. A. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, "On the bremsstrahlung origin of hot-carrier induced photons in silicon devices," IEEE Trans. Electron Devices 40, 577 (1993).
    [CrossRef]
  9. T. H. Ng, W. K. Chim, D. S. H. Chan, J. C. H. Phang, Y. Y. Liu, C. L. Lou, S. E. Leang, and J. M. Tao, "An integrated (automated) photon emission microscope and MOSFET characterization system for combined microscopic and macroscopic device analysis," in Proceeding IPFA, pp. 113-118.
  10. <a href="http://sales.hamamatsu.com/assets/pdf/hpspdf/e_phemos.pdf">http://sales.hamamatsu.com/assets/pdf/hpspdf/e_phemos.pdf</a>.
  11. J. C. Tsang, J. A. Kash, and D. P. Vallett, "Picosecond imaging circuit analysis," IBM J. Res. & Dev. 44, 583-603 (2000).
    [CrossRef]
  12. S. Charbonneau, L. B. Allard, J. F. Young, D. Dick, and B. J. Kyle, "Two-dimensional time-resolved imaging with 100-ps resolution using a resistive anode photomultiplier tube," Rev. Sci. Instrum. 63, 5315-5319 (1992).
    [CrossRef]
  13. J. A. Kash, and J. C. Tsang, "Hot luminescence from CMOS circuits: a picosecond probe of internal timing," Phys. Status Solidi B 204, 507-516 (1997).
    [CrossRef]
  14. J. A. Kash, and J. C. Tsang, "Dynamic internal testing of CMOS circuits using hot luminescence," IEEE Electr. Device Letters 18, 330-332 (1997).
    [CrossRef]
  15. F. Stellari, and P. L. Song, "Testing of ultra low voltage VLSI chips using the superconducting single-photon detector (SSPD)," Microelectronics Reliability 44, 1663-1668 (2004).
    [CrossRef]
  16. F. Stellari, F. Zappa, S. Cova, C. Porta, and J. C. Tsang, "High-speed CMOS circuit testing by 50 ps time-resolved luminescence measurements," IEEE Trans. Electron Devices 48, 2830-2835 (2001).
    [CrossRef]
  17. F. Stellari, A. Tosi, F. Zappa, and S. Cova, "CMOS circuit testing via time-resolved luminescence measurements and simulations," IEEE Trans. Electron Devices 53, 163-169 (2004).
  18. <a href="http://www.kentech.co.uk/imagers.html">http://www.kentech.co.uk/imagers.html</a>.

IBM J. Res. & Dev. (1)

J. C. Tsang, J. A. Kash, and D. P. Vallett, "Picosecond imaging circuit analysis," IBM J. Res. & Dev. 44, 583-603 (2000).
[CrossRef]

IEEE Electr. Device Letters (1)

J. A. Kash, and J. C. Tsang, "Dynamic internal testing of CMOS circuits using hot luminescence," IEEE Electr. Device Letters 18, 330-332 (1997).
[CrossRef]

IEEE Trans. Electron Devices (5)

F. Stellari, F. Zappa, S. Cova, C. Porta, and J. C. Tsang, "High-speed CMOS circuit testing by 50 ps time-resolved luminescence measurements," IEEE Trans. Electron Devices 48, 2830-2835 (2001).
[CrossRef]

F. Stellari, A. Tosi, F. Zappa, and S. Cova, "CMOS circuit testing via time-resolved luminescence measurements and simulations," IEEE Trans. Electron Devices 53, 163-169 (2004).

A. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, "On the bremsstrahlung origin of hot-carrier induced photons in silicon devices," IEEE Trans. Electron Devices 40, 577 (1993).
[CrossRef]

S. Tam, and C. Hu, "Hot electron induced photon and photocarrier generation in silicon MOSFET's," IEEE Trans. Electron Devices ED-31, 1264-1273 (1984).
[CrossRef]

Y. Uraoka, N. Tsustsu, T. Morii, and K. Tsuji, "Hot carrier evaluation of MOSFET's in ULSI circuits using the photon emission method," IEEE Trans. Electron Devices 40, 1426-1431 (1993).
[CrossRef]

IPFA (1)

T. H. Ng, W. K. Chim, D. S. H. Chan, J. C. H. Phang, Y. Y. Liu, C. L. Lou, S. E. Leang, and J. M. Tao, "An integrated (automated) photon emission microscope and MOSFET characterization system for combined microscopic and macroscopic device analysis," in Proceeding IPFA, pp. 113-118.

J. Vac. Sci. Technol. B (1)

M. Paniccia, R. M. Rao, and W. M. Yee, "Optical probing of flip chip packaged microprocessors," J. Vac. Sci. Technol. B 16, 3625-3630 (1998).
[CrossRef]

Microelectronics Reliability (2)

R. Desplats, F. Beaudoin, P. Perdu, P. Poirier, D. Tremouilles, M. Bafleur, and D. Lewis, "Backside localization of current leakage faults using thermal laser stimulation," Microelectronics Reliability 41, 1539-1544 (2001).
[CrossRef]

F. Stellari, and P. L. Song, "Testing of ultra low voltage VLSI chips using the superconducting single-photon detector (SSPD)," Microelectronics Reliability 44, 1663-1668 (2004).
[CrossRef]

Phys Rev. (1)

S. Villa, A. Lacaita, and A. Pacelli, "Photon emission from hot electrons in silicon," Phys Rev. 52, 10992-10999 (1995).

Phys. Status Solidi B (1)

J. A. Kash, and J. C. Tsang, "Hot luminescence from CMOS circuits: a picosecond probe of internal timing," Phys. Status Solidi B 204, 507-516 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Charbonneau, L. B. Allard, J. F. Young, D. Dick, and B. J. Kyle, "Two-dimensional time-resolved imaging with 100-ps resolution using a resistive anode photomultiplier tube," Rev. Sci. Instrum. 63, 5315-5319 (1992).
[CrossRef]

Other (4)

<a href="http://sales.hamamatsu.com/assets/pdf/hpspdf/e_phemos.pdf">http://sales.hamamatsu.com/assets/pdf/hpspdf/e_phemos.pdf</a>.

The National Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, 1993).

J. T. L. Thong, Electron Beam Testing Technology (Plenum, New York, 1993).

<a href="http://www.kentech.co.uk/imagers.html">http://www.kentech.co.uk/imagers.html</a>.

Supplementary Material (2)

» Media 1: AVI (473 KB)     
» Media 2: AVI (1284 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Scheme of the experimental set-up for dynamic circuit analysis; (b): temporal response of the light intensifier convolved with a 100 ps laser pulse.

Fig. 2.
Fig. 2.

(a) Image of the CW luminescence (red spots) emitted by the NAND chain superimposed to a white light picture of the corresponding portion of the circuit; blue arrows indicate the direction of propagation of the electrical signal; (b) profile of the luminescence intensity along a line inside the ellipse.

Fig. 3.
Fig. 3.

(473 KB) Movie showing the time-gated images of the NAND chain; each image is delayed by 50 ps with respect to the previous one.

Fig. 4
Fig. 4

(a) Line profile of the luminescence emitted by 4 NAND gates; (b) optical waveform measured from the selected gates.

Fig. 5.
Fig. 5.

Image of the CW luminescence (red spots) emitted by a portion of the SRAM, superimposed on a white light picture of the corresponding portion of the circuit.

Fig. 6.
Fig. 6.

(1284 KB) Movie showing the time-gated images of the SRAM analyzed during a read cycle.

Fig. 7.
Fig. 7.

Plot of the luminescence emitted by 7 sense amplifiers in the SRAM, as a function of time. The horizontal line indicates that the switching events are synchronous.

Tables (1)

Tables Icon

Table 1. Spatial resolution of our experimental set-up when using a 50X and a 100X objective.

Metrics