Abstract

An improved scheme for displacement measurement using the ultrahigh-order guided modes in a symmetrical metal-cladding optical waveguide is proposed. Based on this idea together with the lock-in amplification technique, a sensor with a stable displacement resolution of 3.3 pm is experimentally demonstrated without any complicated servo system.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. A. Rines, "Fiber-optic accelerometer with hydrophone applications," Appl. Opt. 20, 3453 (1981).
    [CrossRef] [PubMed]
  2. C. Liu, A. M.Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, "Characterization of a High-sensitivity Micromachined Tunneling Accelerometer with Micro-g Resolution," IEEE J. Micorelectromech. Syst. 7, 235 (1998).
    [CrossRef]
  3. E. B. Cooper, E. R. Post, S. Griffith, J. Levitan, S. R. Mnanlis, M. A. Schmidt, and C. F. Quate, "Highresolution micromachined interferometric accelerometer," Appl. Phys. Lett. 76, 3316 (2000).
    [CrossRef]
  4. F. A. Castro, S. R. M. Carneiro, O. Lisboa, and S. L. A. Carrara, "Two-mode optical fiber accelerometer," Opt. Lett. 17, 1474 (1992).
    [CrossRef] [PubMed]
  5. A. S. Gerges, T. P. Newson, and D. A. Jackson, "Practical fiber-optic-based submicro-g accelerometer free from source and environmental perturbations," Opt. Lett. 20, 1155 (1989).
    [CrossRef]
  6. A. Malki, P. Lecoy, N. Marty, C. Renouf, and P. Ferdinand, "Optical fiber accelerometer based on a silicon micromachined cantilever," Appl. Opt. 34, 8014 (1995).
    [CrossRef] [PubMed]
  7. R. A. Soref and D. H. McMahon, "Tilting-mirror fiber-optic accelerometer," Appl. Opt. 23, 486 (1984).
    [CrossRef] [PubMed]
  8. V. Milanovic, E. Bowen, M. E. Zaghloul, N.H. Tea, J. S. Suehle, B. Payne, and M. Gaitan, "Micromachined convective accelerometers in standard integrated circuits technology," Appl. Phys. Lett. 76, 508 (2000).
    [CrossRef]
  9. B. Zhu, M. Owner-Petersen, and T. Licht, "Accelerometer design based on attenuated total reflection," Appl. Opt. 27, 2972 (1988).
    [CrossRef] [PubMed]
  10. X. Liu, Z. Cao, Q. Shen, and S. Huang, "Optical sensor based on Fabry-Perot resonance modes," Appl. Opt. 42, 1 (2003).
    [CrossRef]
  11. H. Lu, Z. Cao, H. Li, and Q. Shen, "Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide," Appl. Phys. Lett. 85, 4579 (2004).
    [CrossRef]
  12. W. P. Chen and J. M. Chen, "Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films," J. Opt. Soc. Am. 71, 189 (1981).
    [CrossRef]
  13. F. Chen, Z. Cao, Q. Shen and Y. Feng, "An optical approach to angular displacement measurement based on attenuated total reflection," Appl. Opt. 44, 5393 (2005).
    [CrossRef] [PubMed]
  14. P. K. Tien, R. Ulrich, and R. J. Martin, "Modes of propagating light waves in thin deposited semiconductor films," Appl. Phys. Lett. 14, 291 (1969).
    [CrossRef]
  15. H. Li, Z. Cao, H. Lu, and Q. Shen, "Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide," Appl. Phys. Lett. 83, 2757 (2003)
    [CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (5)

H. Lu, Z. Cao, H. Li, and Q. Shen, "Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide," Appl. Phys. Lett. 85, 4579 (2004).
[CrossRef]

P. K. Tien, R. Ulrich, and R. J. Martin, "Modes of propagating light waves in thin deposited semiconductor films," Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, "Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide," Appl. Phys. Lett. 83, 2757 (2003)
[CrossRef]

E. B. Cooper, E. R. Post, S. Griffith, J. Levitan, S. R. Mnanlis, M. A. Schmidt, and C. F. Quate, "Highresolution micromachined interferometric accelerometer," Appl. Phys. Lett. 76, 3316 (2000).
[CrossRef]

V. Milanovic, E. Bowen, M. E. Zaghloul, N.H. Tea, J. S. Suehle, B. Payne, and M. Gaitan, "Micromachined convective accelerometers in standard integrated circuits technology," Appl. Phys. Lett. 76, 508 (2000).
[CrossRef]

IEEE J. Micorelectromech. Syst. (1)

C. Liu, A. M.Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, "Characterization of a High-sensitivity Micromachined Tunneling Accelerometer with Micro-g Resolution," IEEE J. Micorelectromech. Syst. 7, 235 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (2)

F. A. Castro, S. R. M. Carneiro, O. Lisboa, and S. L. A. Carrara, "Two-mode optical fiber accelerometer," Opt. Lett. 17, 1474 (1992).
[CrossRef] [PubMed]

A. S. Gerges, T. P. Newson, and D. A. Jackson, "Practical fiber-optic-based submicro-g accelerometer free from source and environmental perturbations," Opt. Lett. 20, 1155 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of construction for sensitive probe: ε 3, ε 2 and ε 3 are dielectric constants of prism, metal film, and air layer, respectively; h 1 and h 2 are thicknesses of air gap and thin gold film deposited on prism base.

Fig. 2.
Fig. 2.

A typical ATR curve is obtained with ε 1 = 1.0, ε 0 = ε 2 = -16 + i0.6@632.8 nm, ε 3 = 3.0, h 1 = 3 μm and h 2 = 43 nm, respectively.

Fig. 3.
Fig. 3.

Experimental arrangement with optical modulation and lock-in amplifier: 1, Reference In; 2, Signal In; 3, Lock-in Amplifier Output.

Fig. 4.
Fig. 4.

Intensity modulation of the reflected light induced by periodical thickness variation of the air gap in the SMCOW. The waveguide parameters are as follows: ε 1 = 1.0, ε 2 = -16 + i0.6, ε 3 = 3.0, h 1 = 108 μm, h 2 = 40 nm, and λ = 632.8 nm.

Fig. 5.
Fig. 5.

Output of Lock-in Amplifier as the modulation signal was applied on the PZT with voltage variation: 0.1 V, 0.5 V, 1.0 V, 0.5V and 0.1V at a frequency of 821 Hz.

Tables (1)

Tables Icon

Table 1. Outputs of Lock-in Amplifier (LI5640).

Metrics