Abstract

We propose a new chromatic dispersion measurement method for the higher-order modes of an optical fiber using optical frequency modulated continuous-wave (FMCW) interferometry. An optical fiber which supports few excited modes was prepared for our experiments. Three different guiding modes of the fiber were identified by using far-field spatial beam profile measurements and confirmed with numerical mode analysis. By using the principle of a conventional FMWC interferometry with a tunable external cavity laser, we have demonstrated that the chromatic dispersion of a few-mode optical fiber can be obtained directly and quantitatively as well as qualitatively. We have also compared our measurement results with those of conventional modulation phase-shift method.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy and M. Tur, "Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre," Electron. Lett. 36, 1946-1947 (2000).
    [CrossRef]
  2. R. I. Killey, V. Mikhailov, S. Appathurai, and P. Bayvel, "Investigation of nonlinear distortion in 40 Gb/s transmission with higher order mode fiber dispersion compensators," J. Lightwave Technol. 20, 2282-2289 (2002).
    [CrossRef]
  3. S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M. F. Yan, F. V. Dimarcello, W. A. Reed, and P. Wisk, "Tunable dispersion compensators utilizing higher order mode fibers," IEEE Photon. Technol. 15, 727-729 (2003).
    [CrossRef]
  4. C. Dorrer and S. Ramachandran, "Self-referencing dispersion characterization of multimode structures using direct instantaneous frequency measurement," IEEE Photon. Technol. 16, 1700-1702 (2004).
    [CrossRef]
  5. L. H. Jae, M. Oh, and Y. Kim, "Two-mode fiber-optic resonant ring interferometer as a sensor," Opt. Lett. 15, 198-200 (1990).
  6. A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, "Fiber-optic dual technique sensor for simultaneous measurement of strain and temperature," J. Lightwave Technol. 12, 170-177 (1994).
    [CrossRef]
  7. C. E. Covington, J. Blake, and S. L. A. Carrara, "Two-mode fiber-optic bending sensor with temperature and stain compensation," Opt. Lett. 19, 676-678 (1994).
  8. T.-J. Chen, "Use of liquid-crystal-clad fiber as a modal filter for a two-mode fiber-optic interferometer," Opt. Lett. 29, 2852-2854 (2004).
    [CrossRef]
  9. D. Menashe, M. Tur and Y. Danziger, " Interferometric technique for measuring dispersion of high order modes in optical fibres," Electron. Lett. 37, 1439-1440 (2001).
    [CrossRef]
  10. J. W. Nicholson, S. Ramachandran, S. Ghalmi, E. A. Monberg, F. V. DiMarcello, M. F. Yan, P. Wisk, and J. W. Fleming, "Electrical spectrum measurements of dispersion in higher order mode fibers," IEEE Photon. Technol. 15, 831-833 (2003).
    [CrossRef]
  11. Y. Jaouën, C. Palavicini, A.-F. Obaton, C. Moreau, P. Silard, "Direct chromatic dispersion determination of higher-order mode fibers using OLCR technique," in Proc. Conference on lasers and electro-optics 2005, CThB4, Baltimore, USA (2005).
  12. D. Derickson, Fiber Optic Test and Measurement, Hewlett-Packard professional books, Prentice Hall PTR, Upper Saddle River, New Jersey, 1998, USA, Chap. 11.
  13. R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, "Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources," J. Lightwave Technol. 12, 1622-1630 (1994).
    [CrossRef]
  14. M. Yoshida, K. Nakamura, and H. Ito, "A new method for measurement of group velocity dispersion of optical fibers by using a frequency-shifted feedback fiber laser," IEEE Photon. Technol. Lett. 13, 227-229 (2001).
    [CrossRef]
  15. T.-J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, and D. Y. Kim, "Mode analysis and modal delay measurement of a few modes fiber by using optical frequency domain reflectometry based on 1550 nm TLS," in Proc. Conference on Lasers and Electro-optics 2005, JthE5, Baltimore, USA (2005).
  16. T.-J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, and D. Y. Kim, "New optical frequency domain differential mode delay measurement for a multimode optical fiber," Opt. Express 13, 4005-4011 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4005">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4005</a>.
    [CrossRef]
  17. T. -J. Ahn and D. Y. Kim, "High-resolution differential mode delay measurement for a multimode optical fiber using a modified optical frequency domain reflectometer," Opt. Express 13, 8256-8262 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-20-8256">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-20-8256</a>.
    [CrossRef]
  18. U. Glombitza and E. Brinkmeyer, "Coherent frequency-domain reflectometry for characterization of singlemode integrated-optical waveguides," J. Lightwave Technol. 11, 1377-1384 (1993).
    [CrossRef]
  19. J. M. Senior, Optical Fiber Communications: Principles and Practice, Prentice Hall Europe, 1992.
  20. T.-J. Ahn, J. Y. Lee, and D. Y. Kim, "Suppression of nonlinear frequency sweep in an optical frequency domain reflectometer by using Hilbert transformation," Appl. Opt. (to be published).
  21. L. Jeunhomme and J. P. Pocholle, "Selective mode excitation of graded index optical fibers," Appl. Opt. 3, 463-468 (1978).
  22. K. Shimizu, T. Horiguchi and Y. Koyamada, "Measurement of Rayleigh backscattering in single-mode fibers based on coherent OFDR employing a DFB laser diode," IEEE Photon. Technol. Lett. 3, 1039-1041 (1991).
    [CrossRef]
  23. T. Okoshi, Optical Fibers, Academic Press, Inc., San Diego, California, 1982.
  24. C. E. Kerbage, B. J. Eggleton, P. S. Westbrook and R. S. Windeler, "Experimental and scalar beam propagation analysis of an air-silica microstructure fiber," Opt. Express 7, 113-122, (2000). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-3-113">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-3-113</a>.
  25. K. Oh, S. Choi, Y. Jung, and J. W. Lee, "Novel hollow optical fibers and their applications in photonic devices for optical communications," J. Lightwave Technol. 23, 524-532 (2005).
    [CrossRef]

Appl. Opt. (2)

T.-J. Ahn, J. Y. Lee, and D. Y. Kim, "Suppression of nonlinear frequency sweep in an optical frequency domain reflectometer by using Hilbert transformation," Appl. Opt. (to be published).

L. Jeunhomme and J. P. Pocholle, "Selective mode excitation of graded index optical fibers," Appl. Opt. 3, 463-468 (1978).

Conf. on Lasers & Electro-optics, 2005 (1)

Y. Jaouën, C. Palavicini, A.-F. Obaton, C. Moreau, P. Silard, "Direct chromatic dispersion determination of higher-order mode fibers using OLCR technique," in Proc. Conference on lasers and electro-optics 2005, CThB4, Baltimore, USA (2005).

Conf. on Lasers and Electro-optics, 2005 (1)

T.-J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, and D. Y. Kim, "Mode analysis and modal delay measurement of a few modes fiber by using optical frequency domain reflectometry based on 1550 nm TLS," in Proc. Conference on Lasers and Electro-optics 2005, JthE5, Baltimore, USA (2005).

Electron. Lett. (2)

D. Menashe, M. Tur and Y. Danziger, " Interferometric technique for measuring dispersion of high order modes in optical fibres," Electron. Lett. 37, 1439-1440 (2001).
[CrossRef]

A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy and M. Tur, "Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre," Electron. Lett. 36, 1946-1947 (2000).
[CrossRef]

IEEE Photon. Technol. (3)

S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M. F. Yan, F. V. Dimarcello, W. A. Reed, and P. Wisk, "Tunable dispersion compensators utilizing higher order mode fibers," IEEE Photon. Technol. 15, 727-729 (2003).
[CrossRef]

C. Dorrer and S. Ramachandran, "Self-referencing dispersion characterization of multimode structures using direct instantaneous frequency measurement," IEEE Photon. Technol. 16, 1700-1702 (2004).
[CrossRef]

J. W. Nicholson, S. Ramachandran, S. Ghalmi, E. A. Monberg, F. V. DiMarcello, M. F. Yan, P. Wisk, and J. W. Fleming, "Electrical spectrum measurements of dispersion in higher order mode fibers," IEEE Photon. Technol. 15, 831-833 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Yoshida, K. Nakamura, and H. Ito, "A new method for measurement of group velocity dispersion of optical fibers by using a frequency-shifted feedback fiber laser," IEEE Photon. Technol. Lett. 13, 227-229 (2001).
[CrossRef]

K. Shimizu, T. Horiguchi and Y. Koyamada, "Measurement of Rayleigh backscattering in single-mode fibers based on coherent OFDR employing a DFB laser diode," IEEE Photon. Technol. Lett. 3, 1039-1041 (1991).
[CrossRef]

J. Lightwave Technol. (5)

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, "Fiber-optic dual technique sensor for simultaneous measurement of strain and temperature," J. Lightwave Technol. 12, 170-177 (1994).
[CrossRef]

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, "Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources," J. Lightwave Technol. 12, 1622-1630 (1994).
[CrossRef]

U. Glombitza and E. Brinkmeyer, "Coherent frequency-domain reflectometry for characterization of singlemode integrated-optical waveguides," J. Lightwave Technol. 11, 1377-1384 (1993).
[CrossRef]

R. I. Killey, V. Mikhailov, S. Appathurai, and P. Bayvel, "Investigation of nonlinear distortion in 40 Gb/s transmission with higher order mode fiber dispersion compensators," J. Lightwave Technol. 20, 2282-2289 (2002).
[CrossRef]

K. Oh, S. Choi, Y. Jung, and J. W. Lee, "Novel hollow optical fibers and their applications in photonic devices for optical communications," J. Lightwave Technol. 23, 524-532 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Other (3)

T. Okoshi, Optical Fibers, Academic Press, Inc., San Diego, California, 1982.

J. M. Senior, Optical Fiber Communications: Principles and Practice, Prentice Hall Europe, 1992.

D. Derickson, Fiber Optic Test and Measurement, Hewlett-Packard professional books, Prentice Hall PTR, Upper Saddle River, New Jersey, 1998, USA, Chap. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics