Abstract

Performances of a multiwavelength optical pulse generator by utilizing a single semiconductor optical amplifier (SOA)-based delayed interferometric switch are investigated. The generator enables us to generate multiwavelength clock pulse trains, which are synchronized with an optical clock. Moreover, the output waveform can be easily controlled by adjusting the time delay and phase offset of the interferometric switch. The obtained pulsewidth controllability is also useful to optimize the waveform according to transmission lines with different cumulative dispersions. We have verified that the pulsewidth tuning enables us to optimize transmission characteristics with various cumulative dispersion values, and have successfully obtained the improved transmission performances of the waveform-converted signals in comparison with conventional signals.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. Mukherjee, "WDM optical communication networks: Progress and challenges," IEEE J. Sel. Areas in Commun. 18, 1810-1824, (2000).
    [CrossRef]
  2. A. Sano, Y. Miyamoto, T. Kataoka, and K. Hagimoto, "Long-span repeaterless transmission systems with optical amplifiers using pulse width management," J. Lightwave Technol. 16, 977-985, (1998).
    [CrossRef]
  3. L. S. Yan, S. M. R. M. Nezam, A. B. Sahin, J. E. McGeehan, T. Luo, Q. Yu, and A. E.Willner, "Enhanced robustness of RZ WDM systems using tunable pulse-width management at the transmitter," in Proc. 28th European Conference on Optical Communications (ECOC) 2002, Paper 10.6.2.
  4. T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "1Tbit/s (100 Gbit/s x 10 channels) OTDM/WDM transmission using a single supercontinuum WDM source," Electron. Lett. 32, 906-907, (1996).
    [CrossRef]
  5. L. Boivin, S. Taccheo, C. R. Doerr, L.W. Stulz, R. Monnard, W. Lin, and W. C. Fang, "A supercontinuum source based on an electroabsorption-modulated laser for long distance DWDM transmission," IEEE Photon. Technol. Lett. 12, 1695-1697, (2000).
    [CrossRef]
  6. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942-954, (1996).
    [CrossRef]
  7. S. G. Park, L. H. Spiekman, M. Eiselt, and J. M. Wiesenfeld, "Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit," IEEE Photon. Technol. Lett. 12, 233-235, (2000).
    [CrossRef]
  8. H. J. Lee, S. J. B. Yoo, and C. S. Park, "Novel all-optical 10 Gbp/s RZ-to-NRZ conversion using SOA-loop-mirror," in Proc. 26th Optical Fiber Communication Conference (OFC) 2001, MB7.
  9. J. L. Pleumeekers, J. Leuthold, M. Kauer, P. G. Bernasconi, and C. A. Burrus, "All-optical wavelength conversion and broadcasting to eight separate channels by a single semiconductor optical amplifier delay interferometer," in Proc. 27th Optical Fiber Communication Conference (OFC) 2002, 596-597.
  10. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett. 5, 787-790, (1993).
    [CrossRef]
  11. K. Tajima, "All-optical switch with switch-off time unrestricted by carrier lifetime," Jpn. J. Appl. Phys. 32, L1746-L1749, (1993).
    [CrossRef]
  12. Y. Ueno, S. Nakamura, K. Tajima, and S. Kitamura, "3.8-THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC)," IEEE Photon. Technol. Lett. 10, 346-348, (1998).
    [CrossRef]
  13. P. Toliver, R. J. Runser, I. Glesk, and P. R. Prucnal, "Comparison of three nonlinear interferometric optical switch geometries," Opt. Commun. 175, 365-373, (2000).
    [CrossRef]
  14. B. Mikkelsen, K. S. Jepsen, M. Vaa, H. N. Poulsen, K. E. Stubkjaer, R. Hess, M. Duelk, W. Vogt, E. Gamper, E. Gini, P. A. Besse, H. Melchior, S. Bouchoule, and F. Devaux, "All-optical wavelength converter scheme for high speed RZ signal formats," Electron. Lett. 33, 2137-2139, (1997).
    [CrossRef]
  15. M. Matsuura, N. Kishi, and T. Miki, "Performance improvement of optical RZ-receiver by utilizing an all-optical waveform converter," Opt. Express 13, 5074-5079, (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-5074">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-5074<a>.
    [CrossRef] [PubMed]
  16. M. Matsuura, N. Kishi, and T. Miki, "Widely pulsewidth-tunable multiwavelength synchronized pulse generation utilizing a single SOA-based delayed interferometric switch," IEEE Photon. Technol. Lett. 17, 902-904, (2005).
    [CrossRef]
  17. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proc. European Conference on Optical Communications (ECOC) 1998, pp. 475-476.
  18. Y. Ueno, S. Nakamura, and K. Tajima, "Record low-power all-optical semiconductor switch operation at ultrafast repetition rates above the carrier cutoff frequency," Opt. Lett. 23, 1846-1848, (1998).
    [CrossRef]
  19. R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, "Semiconductor laser amplifiers for ultrafast all-optical signal processing," J. Opt. Soc. Am. B 14, 3204-3216, (1997).
    [CrossRef]
  20. R. Inohara, K. Nishimura, M. Tsurusawa, and M. Usami, "Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light," IEEE Photon. Technol. Lett. 15, 1192-1194, (2003).
    [CrossRef]
  21. R. J. Manning, D. A. O. Davies, D. Cotter, and J. K. Lucek, "Enhanced recovery rates in semiconductor laser amplifiers using optical pumping," Electron. Lett. 30, 787-788, (1994).
    [CrossRef]
  22. D. von der Linde, "Characterization of the noise in continuously operating mode-locked lasers," Appl. Phys. B 39, 201-217, (1986).
    [CrossRef]
  23. S. Taccheo, and K. Ennser, "Investigation of amplitude noise and timing jitter of supercontinuum spectrum-sliced pulses," IEEE Photon. Technol. Lett. 14, 1100-1102, (2002).
    [CrossRef]
  24. C. Yu, L. S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, "Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber," IEEE Photon. Technol. Lett. 17, 636-638, (2005).
    [CrossRef]
  25. L. Boivin and G. J. Pendock, "Receiver sensitivity for optically amplified RZ signals with arbitrary duty cycle," in Proc. Optical Amplifiers and its Applications (OAA) 1998, pp. 292-295.

Appl. Phys. B (1)

D. von der Linde, "Characterization of the noise in continuously operating mode-locked lasers," Appl. Phys. B 39, 201-217, (1986).
[CrossRef]

ECOC 1998 (1)

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proc. European Conference on Optical Communications (ECOC) 1998, pp. 475-476.

ECOC 2002 (1)

L. S. Yan, S. M. R. M. Nezam, A. B. Sahin, J. E. McGeehan, T. Luo, Q. Yu, and A. E.Willner, "Enhanced robustness of RZ WDM systems using tunable pulse-width management at the transmitter," in Proc. 28th European Conference on Optical Communications (ECOC) 2002, Paper 10.6.2.

Electron. Lett. (3)

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "1Tbit/s (100 Gbit/s x 10 channels) OTDM/WDM transmission using a single supercontinuum WDM source," Electron. Lett. 32, 906-907, (1996).
[CrossRef]

B. Mikkelsen, K. S. Jepsen, M. Vaa, H. N. Poulsen, K. E. Stubkjaer, R. Hess, M. Duelk, W. Vogt, E. Gamper, E. Gini, P. A. Besse, H. Melchior, S. Bouchoule, and F. Devaux, "All-optical wavelength converter scheme for high speed RZ signal formats," Electron. Lett. 33, 2137-2139, (1997).
[CrossRef]

R. J. Manning, D. A. O. Davies, D. Cotter, and J. K. Lucek, "Enhanced recovery rates in semiconductor laser amplifiers using optical pumping," Electron. Lett. 30, 787-788, (1994).
[CrossRef]

IEEE J. Sel. Areas in Commun. (1)

B. Mukherjee, "WDM optical communication networks: Progress and challenges," IEEE J. Sel. Areas in Commun. 18, 1810-1824, (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

S. G. Park, L. H. Spiekman, M. Eiselt, and J. M. Wiesenfeld, "Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit," IEEE Photon. Technol. Lett. 12, 233-235, (2000).
[CrossRef]

L. Boivin, S. Taccheo, C. R. Doerr, L.W. Stulz, R. Monnard, W. Lin, and W. C. Fang, "A supercontinuum source based on an electroabsorption-modulated laser for long distance DWDM transmission," IEEE Photon. Technol. Lett. 12, 1695-1697, (2000).
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett. 5, 787-790, (1993).
[CrossRef]

Y. Ueno, S. Nakamura, K. Tajima, and S. Kitamura, "3.8-THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC)," IEEE Photon. Technol. Lett. 10, 346-348, (1998).
[CrossRef]

R. Inohara, K. Nishimura, M. Tsurusawa, and M. Usami, "Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light," IEEE Photon. Technol. Lett. 15, 1192-1194, (2003).
[CrossRef]

M. Matsuura, N. Kishi, and T. Miki, "Widely pulsewidth-tunable multiwavelength synchronized pulse generation utilizing a single SOA-based delayed interferometric switch," IEEE Photon. Technol. Lett. 17, 902-904, (2005).
[CrossRef]

S. Taccheo, and K. Ennser, "Investigation of amplitude noise and timing jitter of supercontinuum spectrum-sliced pulses," IEEE Photon. Technol. Lett. 14, 1100-1102, (2002).
[CrossRef]

C. Yu, L. S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, "Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber," IEEE Photon. Technol. Lett. 17, 636-638, (2005).
[CrossRef]

J. Lightwave Technol. (2)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942-954, (1996).
[CrossRef]

A. Sano, Y. Miyamoto, T. Kataoka, and K. Hagimoto, "Long-span repeaterless transmission systems with optical amplifiers using pulse width management," J. Lightwave Technol. 16, 977-985, (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K. Tajima, "All-optical switch with switch-off time unrestricted by carrier lifetime," Jpn. J. Appl. Phys. 32, L1746-L1749, (1993).
[CrossRef]

OFC 2001 (1)

H. J. Lee, S. J. B. Yoo, and C. S. Park, "Novel all-optical 10 Gbp/s RZ-to-NRZ conversion using SOA-loop-mirror," in Proc. 26th Optical Fiber Communication Conference (OFC) 2001, MB7.

OFC 2002 (1)

J. L. Pleumeekers, J. Leuthold, M. Kauer, P. G. Bernasconi, and C. A. Burrus, "All-optical wavelength conversion and broadcasting to eight separate channels by a single semiconductor optical amplifier delay interferometer," in Proc. 27th Optical Fiber Communication Conference (OFC) 2002, 596-597.

Opt. Commun. (1)

P. Toliver, R. J. Runser, I. Glesk, and P. R. Prucnal, "Comparison of three nonlinear interferometric optical switch geometries," Opt. Commun. 175, 365-373, (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. OAA 1998 (1)

L. Boivin and G. J. Pendock, "Receiver sensitivity for optically amplified RZ signals with arbitrary duty cycle," in Proc. Optical Amplifiers and its Applications (OAA) 1998, pp. 292-295.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Configuration of multiwavelength optical pulse generator, (b) Temporal phase changes of the CLW (solid line) and the CCW (dashed line) probe beams, (c) Differential phase response between the two probe beams, and (d) Output intensity of the generated signal.

Fig. 2.
Fig. 2.

Experimental setup for multiwavelength synchronized signal generation and transmission of the generated signals.

Fig. 3.
Fig. 3.

(a) Time delay setting dependence of the optimum phase offset of the generated signals. The dashed line and circles show the calculated and measured phase offsets, respectively. (b), (c) The calculated (dashed) and measured (solid) temporal waveforms of the generated signals at phase offsets Φ 0 of 1.16 π (Optimized:(b)), and 1.04 π (Non-optimized:(c)).

Fig. 4.
Fig. 4.

Dependences of the carrier recovery time of the injected probe power for single- and multiple-channel configurations.

Fig. 5.
Fig. 5.

(a) Output signal wavelength and (b) time delay setting dependences of the RMS timing jitter.

Fig. 6.
Fig. 6.

Time delay setting dependence of the error-free sensitivity for various cumulative dispersion values.

Fig. 7.
Fig. 7.

Cumulative dispersion dependence of the error-free sensitivity for the conventional RZ and NRZ signals, and the waveform-converted signals with different operating wavelengths.

Fig. 8.
Fig. 8.

Error-free sensitivities of the waveform-converted signal and the NRZ signal after 70 km transmission at each channel for simultaneously generated 8 and 16 channels. The inset shows the eye pattern of the waveform-converted signal at a channel of 16 wavelengths after transmission.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T ( t ) = 1 2 [ 1 + cos ( Φ ( t ) Φ ( t Δ t ) + Φ 0 ) ]
Φ 0 = Φ ( t ) Φ ( t Δ t ) + Δ t t R ΔΦ

Metrics