Abstract

We report room temperature demonstration of slow light propagation via coherent population oscillation (CPO) in a GaAs quantum well waveguide. Measurements of the group delay of an amplitude modulated signal resonant with the heavy-hole exciton transition reveal delays as long as 830 ps. The measured bandwidth, which approaches 100 MHz, is related to the lifetime of the photoexcited electron-hole (e-h) plasma as expected for a CPO process.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. J. Chang-Hasnain, P. C. Ku, J. Kim, S. L. Chuang, “Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,” in Proceedings of the IEEE Conference on Special Issue on Nanoelectronics and Nanoscale Processing (2003), pp. 1884-1897.
  2. M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev.Lett. 90, 113903 (2003).
    [CrossRef] [PubMed]
  3. L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas,” Nature 397, 594-598 (1999).
    [CrossRef]
  4. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291 (2004).
    [CrossRef] [PubMed]
  5. P. Palinginis, H. Wang, “Coherent Raman resonance from electron spin coherence in GaAs quantum wells,” Phys. Rev. B 70, 153007 (2004).
    [CrossRef]
  6. S. Sarkar, P. Palinginis, P. C. Ku, C. J. Chang-Hasnain, N. H. Kwong, R. Binder, H. Wang, “Inducing electron spin coherence in GaAs quantum well waveguides: Spin coherence without spin precession,” Phys. Rev. B 72, 35343 (2005).
    [CrossRef]
  7. P. Palinginis, S. Crankshaw, F. Sedgwick, E. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 111702 (2005)
    [CrossRef]
  8. D. S. Chemla, D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Am. B 2, p 1155 (1985).
    [CrossRef]
  9. M. Sargent III, “Spectroscopic techniques based on Lamb’s laser theory,” Phys. Rep. 43, 223 (1978).
    [CrossRef]
  10. M. S. Bigelow, N. N. Lepeshkin, R.W. Boyd, “Ultra-slow and superluminal light propagation in solids at room temperature,” J. Cond. Matt. Phys. 16, 1321 (2004).
    [CrossRef]
  11. H. Wang, J. T. Remillard, M. D. Webb, D. G. Steel, J. Pamulapati, J. Oh, and P. K. Bhattacharya, “High-resolution laser spectroscopy of relaxation and the excitation lineshape of excitons in GaAs quantum well structures,” Surf. Sci. 228, 69 (1990).
    [CrossRef]
  12. Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, H. Ohno, “Spin relaxation in (110) GaAs quantum wells,” Phys. Rev. Lett. 83, 4196 (1999).
    [CrossRef]
  13. D. Dahan, G. Eisenstein, “Tunable all-optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all-optical buffering,” Opt. Express 13, 6234 (2005)
    [CrossRef] [PubMed]

Appl. Phys. Lett. (1)

P. Palinginis, S. Crankshaw, F. Sedgwick, E. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 111702 (2005)
[CrossRef]

IEEE Conference on Special Issue on Nano (1)

C. J. Chang-Hasnain, P. C. Ku, J. Kim, S. L. Chuang, “Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,” in Proceedings of the IEEE Conference on Special Issue on Nanoelectronics and Nanoscale Processing (2003), pp. 1884-1897.

J. Cond. Matt. Phys. (1)

M. S. Bigelow, N. N. Lepeshkin, R.W. Boyd, “Ultra-slow and superluminal light propagation in solids at room temperature,” J. Cond. Matt. Phys. 16, 1321 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rep. (1)

M. Sargent III, “Spectroscopic techniques based on Lamb’s laser theory,” Phys. Rep. 43, 223 (1978).
[CrossRef]

Phys. Rev. B (2)

P. Palinginis, H. Wang, “Coherent Raman resonance from electron spin coherence in GaAs quantum wells,” Phys. Rev. B 70, 153007 (2004).
[CrossRef]

S. Sarkar, P. Palinginis, P. C. Ku, C. J. Chang-Hasnain, N. H. Kwong, R. Binder, H. Wang, “Inducing electron spin coherence in GaAs quantum well waveguides: Spin coherence without spin precession,” Phys. Rev. B 72, 35343 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, H. Ohno, “Spin relaxation in (110) GaAs quantum wells,” Phys. Rev. Lett. 83, 4196 (1999).
[CrossRef]

Phys. Rev.Lett. (1)

M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev.Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Surf. Sci. (1)

H. Wang, J. T. Remillard, M. D. Webb, D. G. Steel, J. Pamulapati, J. Oh, and P. K. Bhattacharya, “High-resolution laser spectroscopy of relaxation and the excitation lineshape of excitons in GaAs quantum well structures,” Surf. Sci. 228, 69 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Top. transmission spectrum from the L = 440 μm long QW WG sample. The spectrum was recorded with the AM switched off. The inset shows a schematic of the setup. HH and LH exciton absorption resonances are clearly resolved in the absorption spectrum shown in the bottom graph. Arrows indicate the spectral position for the on- and off-resonant conditions used in the measurements of group delay induced via CPO at the HH-exciton transition.

Fig. 2.
Fig. 2.

(a) Generic example of two modulation traces recorded on- and off- resonance (f = 100 MHz and P = 75 mW). The trace obtained on-resonance with the HH-excition transition is delayed. (b) Delay as a function of modulation frequency for P = 25, 50, 75 mW input power. Solid lines are Lorentzian fits. The inset shows the power dependence of the FWHM as obtained from the numerical fits.

Fig. 3.
Fig. 3.

Power dependence of the fractional delay for various modulation frequencies demonstrating optical control over the group delay.

Metrics