Abstract

We analyze the performance of nanocrystal-Si (nc-Si) sensitized Er-doped waveguide amplifier using coupled nc-Si-Erbium rate equation, and suggest novel structures / operation methods which can be used to enhance its performance figures. With 2-dimensional modified propagation equation applied for the pump / signal waves along with modest assumptions on design parameters, we show that 10dB of gain with 0dBm input signal can be achieved with currently available pump LED power.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Jung H. Shin, S-Y. Seo, S. Kim, and S. G. Bishop, “Photoluminescence excitation spectroscopy of erbiumdoped silicon-rich silicon oxide,” Appl. Phys. Lett. 76, 1999-2001 (2000).
    [CrossRef]
  2. Hak-Seung Han, Se-Young Seo, and Jung H. Shin, “Optical gain at 1.54um in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568-4570 (2001).
    [CrossRef]
  3. Hak-Seung Han, Se-Young Seo, Jung H. Shin, and Namkyoo Park, “Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720-3722, (2002).
    [CrossRef]
  4. G. Franzo, V. Vinciguerra, and F. Priolo, “The excitation mechanism of rare-earth ions in silicon nanocrystals,” Appl. Phys. A. 69, 3-12 (1999).
    [CrossRef]
  5. A. J. Kenyon, C.E. Chryssou, C. W. Pitt , T. Shimizu-lwayama, D. E. Hole, N. Sharme , and C. J. Humphreys, “Luminescence from erbium doped silicon nanocrystal in silica: excitation mechanisms, ” J. Appl. Phys. 91, 367-374 (2002).
    [CrossRef]
  6. Stefan Schmitt-Rink, Chandra M. Varma, and Anthony F. J. Levi, “Excitation Mechanisms and Optical Properties of Rare-Earth Ions in Semiconductors,” Phys. Rev. Lett. 66, 2782-2785 (1991).
    [CrossRef] [PubMed]
  7. P. G. Kik, “Towards an Er-doped Si nanocrystal sensitized waveguide laser – the thin line between gain and loss,” in Towards the First Silicon Laser, NATO Science Series II 93.
  8. P. G. Kik and A. Polman, “Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2,” J. Appl. Phys. 91, 534-536 (2002).
    [CrossRef]
  9. Jinku Lee, Jung H. Shin, and Namkyoo Park, “Optical gain at 1.5um in Nanocrystal Si-Sensitized, Er-doped Silica Waveguide using Top-Pumping 470nm LEDs,” J. Lightwave Technol. 23, 19-25 (2005).
    [CrossRef]
  10. Hak-Seung Han “Optical gain using nanocrystal sensitized erbium,” NATO Science Series II, 2003, 93, Kluwer Academic Publishers Netherland.
  11. Domenico Pacifici, Giorgia Franzo, Francesco Priolo, Fabio Iacona, and Luca Dal Negro, “Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification,” Phys. Rev. B. 67, 245301 (2003).
    [CrossRef]
  12. F. Gourbilleau, M. Levalois, C. Dufour, J. Vicens, and R. Rizk, “Optimized conditions for an enhanced coupling rate between Er ions and Si nanoclusters for an improved 1.54-um emission,” J. Appl. Phys. 95, 3717-3722 (2004).
    [CrossRef]
  13. Minoru Fujii, Kenji Imakita, Kei Watanabe, and Shinji Hayashi, “Coexistence of two different energy transfer processes in SiO2 films containing Si nanocrystals and Er,” J. Appl. Phys. 95, 272-280 (2004)
    [CrossRef]
  14. F. Pirioli, Giorgia Franzò, Domenico Pacifici, Vincenzo Vinciguerra, Fabio Iacona, and Alessia Irrera, “Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals,” J. Appl. Phys. 89, 264-272 (2001).
    [CrossRef]
  15. Fabio Iacona, Giorgia Franzò, and Corrado Spinella, “Correlation between Iuminescence and structural properties of Si nanocrystals,” J. Appl. Phys. 87, 1295-1303 (2000).
    [CrossRef]
  16. Kei Watanabe, Minoru Fujii, and Shinji Hayashi, “Resonant excitation of Er3+ by the energy transfer from Si nanocrystals,” J. Appl. Phys. 90, 4761-4767 (2001).
    [CrossRef]
  17. C. Randy Giles and Emmanuel Desurvire, “ Modeling Erbium-Doped Fiber Amplifiers,” J. Lightwave Technol. 9, 271-283 (1991).
    [CrossRef]
  18. O. Lumholt, T. Rasmussen, A. Bjarklev, “Modeling of extremely high concentration Erbium-doped silica waveguides,” Electron. Lett. 29, 495-496 (1993).
    [CrossRef]
  19. Jung H. Shin, Jinku Lee, Hak-seung Han, Ji-Hong Jhe, Se-Young Seo, Hasuek Lee, and Namkyoo Park, “Si nanocluster sensitization of Er-doped silica for optical amplet using top-pumping visible LEDs,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  20. N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, F. Gourbilleau, M. Carrada, R. Rizk, C. Garcia, P. Pellegrino, B. Garrido, and L. Cognolato, “Absorption cross section and signal enhancement in Er-doped Si nanocluster rib-loaded waveguides,” Appl. Phys. Lett. 86, 261103 (2005)
    [CrossRef]
  21. Domenico Pacifici, Luca Lanzano, Giorgia Franzo, Francesco Priolo and Fabio Iacona, “Revealing the sequential nature of the Si-nanocluster-Er interaction by variable pulse duration excitation,” Phys. Rev. B. 72, 045349 (2005)
    [CrossRef]

Appl. Phys. A. (1)

G. Franzo, V. Vinciguerra, and F. Priolo, “The excitation mechanism of rare-earth ions in silicon nanocrystals,” Appl. Phys. A. 69, 3-12 (1999).
[CrossRef]

Appl. Phys. Lett. (4)

Jung H. Shin, S-Y. Seo, S. Kim, and S. G. Bishop, “Photoluminescence excitation spectroscopy of erbiumdoped silicon-rich silicon oxide,” Appl. Phys. Lett. 76, 1999-2001 (2000).
[CrossRef]

Hak-Seung Han, Se-Young Seo, and Jung H. Shin, “Optical gain at 1.54um in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568-4570 (2001).
[CrossRef]

Hak-Seung Han, Se-Young Seo, Jung H. Shin, and Namkyoo Park, “Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720-3722, (2002).
[CrossRef]

N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, F. Gourbilleau, M. Carrada, R. Rizk, C. Garcia, P. Pellegrino, B. Garrido, and L. Cognolato, “Absorption cross section and signal enhancement in Er-doped Si nanocluster rib-loaded waveguides,” Appl. Phys. Lett. 86, 261103 (2005)
[CrossRef]

Electron. Lett. (1)

O. Lumholt, T. Rasmussen, A. Bjarklev, “Modeling of extremely high concentration Erbium-doped silica waveguides,” Electron. Lett. 29, 495-496 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Jung H. Shin, Jinku Lee, Hak-seung Han, Ji-Hong Jhe, Se-Young Seo, Hasuek Lee, and Namkyoo Park, “Si nanocluster sensitization of Er-doped silica for optical amplet using top-pumping visible LEDs,” IEEE J. Sel. Top. Quantum Electron. (to be published).

J. Appl. Phys. (7)

F. Gourbilleau, M. Levalois, C. Dufour, J. Vicens, and R. Rizk, “Optimized conditions for an enhanced coupling rate between Er ions and Si nanoclusters for an improved 1.54-um emission,” J. Appl. Phys. 95, 3717-3722 (2004).
[CrossRef]

Minoru Fujii, Kenji Imakita, Kei Watanabe, and Shinji Hayashi, “Coexistence of two different energy transfer processes in SiO2 films containing Si nanocrystals and Er,” J. Appl. Phys. 95, 272-280 (2004)
[CrossRef]

F. Pirioli, Giorgia Franzò, Domenico Pacifici, Vincenzo Vinciguerra, Fabio Iacona, and Alessia Irrera, “Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals,” J. Appl. Phys. 89, 264-272 (2001).
[CrossRef]

Fabio Iacona, Giorgia Franzò, and Corrado Spinella, “Correlation between Iuminescence and structural properties of Si nanocrystals,” J. Appl. Phys. 87, 1295-1303 (2000).
[CrossRef]

Kei Watanabe, Minoru Fujii, and Shinji Hayashi, “Resonant excitation of Er3+ by the energy transfer from Si nanocrystals,” J. Appl. Phys. 90, 4761-4767 (2001).
[CrossRef]

A. J. Kenyon, C.E. Chryssou, C. W. Pitt , T. Shimizu-lwayama, D. E. Hole, N. Sharme , and C. J. Humphreys, “Luminescence from erbium doped silicon nanocrystal in silica: excitation mechanisms, ” J. Appl. Phys. 91, 367-374 (2002).
[CrossRef]

P. G. Kik and A. Polman, “Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2,” J. Appl. Phys. 91, 534-536 (2002).
[CrossRef]

J. Lightwave Technol. (2)

NATO Science Series II (1)

Hak-Seung Han “Optical gain using nanocrystal sensitized erbium,” NATO Science Series II, 2003, 93, Kluwer Academic Publishers Netherland.

Phys. Rev. B. (2)

Domenico Pacifici, Giorgia Franzo, Francesco Priolo, Fabio Iacona, and Luca Dal Negro, “Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification,” Phys. Rev. B. 67, 245301 (2003).
[CrossRef]

Domenico Pacifici, Luca Lanzano, Giorgia Franzo, Francesco Priolo and Fabio Iacona, “Revealing the sequential nature of the Si-nanocluster-Er interaction by variable pulse duration excitation,” Phys. Rev. B. 72, 045349 (2005)
[CrossRef]

Phys. Rev. Lett. (1)

Stefan Schmitt-Rink, Chandra M. Varma, and Anthony F. J. Levi, “Excitation Mechanisms and Optical Properties of Rare-Earth Ions in Semiconductors,” Phys. Rev. Lett. 66, 2782-2785 (1991).
[CrossRef] [PubMed]

Towards the First Silicon Laser (1)

P. G. Kik, “Towards an Er-doped Si nanocrystal sensitized waveguide laser – the thin line between gain and loss,” in Towards the First Silicon Laser, NATO Science Series II 93.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Energy transfer diagram for NC-Si and Erbium interaction system with its coupled rate equation

Fig. 2.
Fig. 2.

2-dimensional propagation model for pump and signal waves

Fig. 3.
Fig. 3.

Absorption and emission cross-section of Erbium in NC-Si/SiO2 host

Fig. 4.
Fig. 4.

Amplifier characteristics of 7×7μm core NC-EDWA: (a) gain as a function of active region length and pump power change (0dBm input signal power ), (b) gain as a function of input signal and pump power variations (for 5cm waveguide, with and without bottom mirror : solid and dashed lines)

Fig. 5.
Fig. 5.

(a) NC-EDWA with expanded active area, with mode-converting taper structure for in/output coupling. (b) Mode profile in the adiabatically expanded NC-EDWA structure (width for the active area =50 μm)

Fig. 6.
Fig. 6.

(a) Calculated mode overlap factor and corresponding waveguide length for the NC-EDWA as a function of active waveguide width (to achieve 10dB of gain at 0dBm input signal), (b) Small signal gain and saturation input power (for 5cm of active waveguide length)

Fig. 7.
Fig. 7.

NC-EDWA gain with 50×7μm active core, (a) plotted as a function of waveguide length and pump intensity (for 0dBm input signal), (b) plotted as a function of input signal power and pump intensity (for waveguide length 5cm). Solid and Dashed lines are the results with and without mirror, respectively.

Fig. 8.
Fig. 8.

(a) Inversion distribution along the waveguide length and (b–e) spatial inversion distribution over the cross-sectional area (measured at 1cm from input) for different NC-EDWA structures : (b) 7×7 (c) mirrored 7×7 (d) 50×7 (e) mirrored 50×7 μm2 active waveguide (for all, 5cm waveguide length, 0dBm input and 25W/cm2 pump intensity were assumed).

Fig. 9.
Fig. 9.

(a) gain and (b) noise figure contour as a function of Er meta-state lifetime and signal emission/absorption cross-section. (c) gain and (d) noise figure contour as a function of pump absorption cross-section and NC-Si to Er coupling coefficient (5cm waveguide length, 50 × 7 μm2 active core with bottom mirror, 0dBm input and 25W/cm2 pump intensity were assumed). Cross mark for parameter values in table I. Shaded area shows the regions of acceptable parameter range providing the NC-EDWA target performance.

Tables (1)

Tables Icon

Table 1. Parameters used in the analysis [7, 8, 9, 11, 18]

Metrics