Abstract

We report the first experimental demonstration of pulse advancement with gain in optical fibers based on stimulated Brillouin scattering. Two experimental configurations are investigated and compared. One is to make the pulse propagate in a region slightly detuned from a gain peak where the group velocity change is negative and the other is to make use of the large anomalous dispersion appearing between two gain peaks. We experimentally show that the second method produces pulse advancement with lower distortion than the first one.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘Fast’ Light,” Ch. 6 in Progress in Optics 43, E. Wolf, Ed. (Elsevier, Amsterdam, 2002), 497-530.
  2. L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
    [CrossRef]
  3. C. Liu, Z. Dutton, C. H. Behroozi and L. V. Hau. “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
    [CrossRef] [PubMed]
  4. L. J. Wang, A. Kuzmich and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277-279 (2000).
    [CrossRef] [PubMed]
  5. M. D. Stenner, D. J. Gauthier and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425, 695-698 (2003).
    [CrossRef] [PubMed]
  6. A. M. Akulshin, S. Barreiro and A. Lezema “Steep anomalous dispersion in a coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277 (1999).
    [CrossRef]
  7. M. S. Bigelow, N. N. Lepeshkin and R. W. Boyd, “Superluminal and Slow-light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
    [CrossRef] [PubMed]
  8. K. Y. Song, M. G. Herráez and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82-88 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-82">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-82<a>.
    [CrossRef] [PubMed]
  9. K. Y. Song, M. G. Herráez and L. Thévenaz, “Long optically controlled delays in optical fibers,” Opt. Lett. 30, 1782-1784 (2005).
    [CrossRef] [PubMed]
  10. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  11. M. G. Herráez, K. Y. Song and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
    [CrossRef]
  12. J. E. Sharping, Y. Okawachi and Alexander L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092-6098 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-16-6092">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-16-6092</a>.
    [CrossRef] [PubMed]
  13. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234-6249 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-16-6234">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-16-6234</a>.
    [CrossRef] [PubMed]
  14. E. L. Bolda, J. C. Garrison and R. Y. Chiao, “Optical pulse propagation at negative group velocities due to a nearby gain,” Phys. Rev. A 49, 2938-2947 (1994).
    [CrossRef] [PubMed]
  15. M. Niklès, L. Thévenaz and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol., LT-15, 1842-1851 (1997).
    [CrossRef]
  16. S. E. Harris, J. E. Field and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, 29 (1992).
    [CrossRef]
  17. R. W. Boyd, D. J. Gauthier, A. L. Gaeta and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
    [CrossRef]
  18. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd and A. E. Willer, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B, 22, 2378-2384 (2005).
    [CrossRef]

Appl. Phys. Lett.

M. G. Herráez, K. Y. Song and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

J. Lightwave Technol.

M. Niklès, L. Thévenaz and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol., LT-15, 1842-1851 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Nature

L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

C. Liu, Z. Dutton, C. H. Behroozi and L. V. Hau. “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

L. J. Wang, A. Kuzmich and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

M. D. Stenner, D. J. Gauthier and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425, 695-698 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

S. E. Harris, J. E. Field and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, 29 (1992).
[CrossRef]

R. W. Boyd, D. J. Gauthier, A. L. Gaeta and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

E. L. Bolda, J. C. Garrison and R. Y. Chiao, “Optical pulse propagation at negative group velocities due to a nearby gain,” Phys. Rev. A 49, 2938-2947 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett.

A. M. Akulshin, S. Barreiro and A. Lezema “Steep anomalous dispersion in a coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277 (1999).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Progress in Optics

R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘Fast’ Light,” Ch. 6 in Progress in Optics 43, E. Wolf, Ed. (Elsevier, Amsterdam, 2002), 497-530.

Science

M. S. Bigelow, N. N. Lepeshkin and R. W. Boyd, “Superluminal and Slow-light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Gain, refractive index change An and group index change ∆ng generated in an optical fiber in (a) single peak and (b) double peak configurations: v 1 and v 2, optical frequencies of the Brillouin gain peaks; v 0, central frequency of the probe pulse; ∆v, detuning frequency.

Fig. 2.
Fig. 2.

Experimental setup for optical delay measurement. Devices surrounded by the dashed box are only inserted for the double peak configuration: LD, laser diode; VOA, variable optical attenuator; EOM, electro-optic modulator; PD, photodiode; EDFA, erbium-doped fiber amplifier.

Fig. 3.
Fig. 3.

Time waveforms of probe pulses at a few selected ∆v’s in (a) single peak and (b) double peak configuration. The gain values of 10 dB (middle) and 20 dB (bottom) mean the maximum gains at ∆v=0 in both cases. The dashed lines indicate the peak position of the initial 37-ns probe pulse with no Brillouin pump.

Fig. 4.
Fig. 4.

Measured gain and time delay of probe pulses as a function of the detuning frequency ∆v in (a) single peak and (b) double peak configurations, respectively. The gain values of 10 dB (top) and 20 dB (bottom) mean the maximum gains at ∆v=0 in both cases. The dotted line indicates the original (no pump) position of probe pulses.

Fig. 5.
Fig. 5.

The FWHM of probe pulses as a function of ∆v normalized by the initial value (37 ns) in the case of (a) single peak and (b) double peak configurations, respectively. The gain means the maximum gain values at ∆v=0.

Fig. 6.
Fig. 6.

Calculated time delays and relative pulse widths normalized to the initial value according to the detuning frequency based on linear theory in (a) single peak and (b) double peak configurations. A uniform Brillouin gain of a Lorentzian shape with a FWHM of 30 MHz is assumed through the fiber and the maximum gain at ∆v=0 is set to 20 dB.

Metrics