Abstract

We present an optical shift register that consist out of two serially connected optical flip-flop memories driven by common clock pulses. Each optical flip-flop consists out of two ring lasers sharing a single active element, which makes the optical flip-flops easily cascade with each other. The two cascaded optical flip-flops are controlled by the clock pulses in such a way that the input data set the new state of the first optical flip-flop, after the state of the first flip-flop has been transferred to the second optical flip-flop. The concept is demonstrated at an operation speed of 20 kHz, which is limited by the 10 m long laser cavities formed by the fiber pig-tailed components.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. A. Whitaker Jr., M. C. Gabriel, H. Avramopoulos, and A. Huang, “All-optical, all-fiber circulating shift register with an inverter,” Opt. Lett. 16, 1999-2001 (1991).
    [CrossRef] [PubMed]
  2. A. J. Poustie, R. J. Manning, and K. J. Blow, “All-optical circulating shift register using a semiconductor optical amplifier in a fibre,” Electron. Lett. 32, 1215-1216 (1996).
    [CrossRef]
  3. B. Tian, W. V. Etten, and W. Beuwer, “Ultrafast all-optical shift register and its perspective application for optical packet switching,” IEEE J. Sel. Top. Quantum Electron. 8, 722-728 (2002).
    [CrossRef]
  4. S. Zhang, Y. Liu, D. Lenstra, M. T. Hill, H. Ju, G. D. Khoe, and H. J. S. Dorren, “Ring-laser optical flipflop memory with single active element,” IEEE J. Sel. Top. Quantum Electron. 10, 1093-1100 (2004).
    [CrossRef]
  5. H. Kawaguchi, “Bistabilities and Nonlinearities in Laser Diodes,” (Artech House, London, 1994).
  6. M. T. Hill, H. J. S. Dorren, T. J. de Vries, X. J. M. Leijtens, J. H. den Besten, E. Smalbrugge, Y. S. Oei, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-209 (2004).
    [CrossRef] [PubMed]
  7. S. Zhang, D. Owens, Y. Liu, M. T. Hill, D. Lenstra, A. Tzanakaki, G. D. Khoe, and H. J. S. Dorren, "Multistate optical memory based on serially interconnected lasers," IEEE Photon. Technol. Lett. 17, 1962-1964 (2005).
    [CrossRef]

Electron. Lett. (1)

A. J. Poustie, R. J. Manning, and K. J. Blow, “All-optical circulating shift register using a semiconductor optical amplifier in a fibre,” Electron. Lett. 32, 1215-1216 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

B. Tian, W. V. Etten, and W. Beuwer, “Ultrafast all-optical shift register and its perspective application for optical packet switching,” IEEE J. Sel. Top. Quantum Electron. 8, 722-728 (2002).
[CrossRef]

S. Zhang, Y. Liu, D. Lenstra, M. T. Hill, H. Ju, G. D. Khoe, and H. J. S. Dorren, “Ring-laser optical flipflop memory with single active element,” IEEE J. Sel. Top. Quantum Electron. 10, 1093-1100 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Zhang, D. Owens, Y. Liu, M. T. Hill, D. Lenstra, A. Tzanakaki, G. D. Khoe, and H. J. S. Dorren, "Multistate optical memory based on serially interconnected lasers," IEEE Photon. Technol. Lett. 17, 1962-1964 (2005).
[CrossRef]

Nature (1)

M. T. Hill, H. J. S. Dorren, T. J. de Vries, X. J. M. Leijtens, J. H. den Besten, E. Smalbrugge, Y. S. Oei, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (1)

H. Kawaguchi, “Bistabilities and Nonlinearities in Laser Diodes,” (Artech House, London, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic configuration of the optical shift register.

Fig. 2.
Fig. 2.

(a) The configuration of the optical converter. (b) The symbol that we use to indicate the optical converter. (c) The signal injected into the optical converter at the wavelength of λ2 (1552.52 nm). (d) and (e) The signal that outputs the optical converter at the wavelengths of λ2 and λ1 (1550.92 nm), respectively. ISO Isolator.

Fig. 3.
Fig. 3.

(a) Schematic configuration of the optical flip-flop memory. (b) The symbol that we use to indicate the optical flip-flop memory. (c) and (d) Experimental results to show that the system has two stable states. ATT: Attenuator

Fig. 4.
Fig. 4.

Experimental results for shifting of the binary sequence 01010011. (a): The 20 kHz clock signal. (b) The output of the optical converter. (c) The output of optical flip-flop 1. (d) The output of optical flip-flop 2. All the signals in panels (b), (c) and (d) are filtered by a filter with a center wavelength of λ2 (1552.92 nm).

Fig. 5.
Fig. 5.

Experimental results when the clock signal is modulated such that every six consecutive pluses are followed by five consecutive blank cycles. (a) The 20 kHz clock signal. (b) The output of the optical converter. (c) The output of optical flip-flop 1. (d) The output of optical flip-flop 2. All the signals in panels (b), (c) and (d) are filtered by a filter with a center wavelength of λ2 (1552.92 nm).

Metrics