Abstract

The design, micro-fabrication, and electronic and optical performance of a tuneable short-wavelength infrared Fabry-Perot micro-resonator on a mercury cadmium telluride photoconductor is presented. The maximum processing temperature of 125 °C has negligible effect on the electronic and optical performance of photoconductor test structures. Maximum responsivity, effective carrier lifetime and detectivity are 60 × 103 VW-1, 2 × 10-5 s and 8 × 1010 cmHz1/2W-1, respectively. The maximum effective carrier lifetime and specific detectivity are in good agreement with the theoretical maxima. Uncooled device operation is possible since responsivity is observed not to improve with thermo-electric cooling. Spectral tuning of the micro-filters is demonstrated over the wavelength range 1.7 to 2.2 μm using drive voltages up to 8 V, with the full-width-half-maximum of the resonance approximately 100 nm. Membrane deflection can be up to 40% of the cavity width.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003).
    [CrossRef]
  2. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. (CRC Press, 2002).
  3. L. J. Kozlowski, G. M.Williams, G. J. Sullivan, C.W. Farley, R. J. Anderson, J. C. D. T. Cheung, W. E. Tennant, and R. E. DeWames, “LWIR 128×128 GaAs/AlGaAs multiple quantum well hybrid focal plane array,” IEEE Trans. Electron Devices 38, 1124–1130 (1991).
    [CrossRef]
  4. G. Sarusi, B. F. Levine, S. J. Pearton, K. M. S. Bandara, and R. E. Leibenguth, “Improved performance of quantum well infrared photodetectors using random scattering optical coupling,” Appl. Phys. Lett. 64, 960–962 (1994).
    [CrossRef]
  5. R. A. Wood, C. J. Han, and P. W. Kruse, “Integrated uncooled infrared detector imaging arrays,” in Technical Digest. IEEE Solid-State Sensor and Actuator Workshop (Cat. No.92TH0403-X), pp. 132–135 (1992).
    [CrossRef]
  6. I. H. Choi and K. D. Wise, “A silicon-thermopile-based infrared sensing array for use in automated manufacturing,” IEEE Trans. Electron Devices 33, 72–79 (1986).
    [CrossRef]
  7. P. G. Datskos, P. I. Oden, T. Thundat, E. A.Wachter, R. J.Warmack, and S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69, 2986–2988 (1996).
    [CrossRef]
  8. Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication and performance,” J. Microelectromech. Syst. 11, 136–146 (2002).
    [CrossRef]
  9. C. A. Musca, “Photoconductive infrared detector technology based on epitaxially-grown mercury cadmium telluride heterostructures,” Ph.D. thesis, Department of Electrical and Electronic Engineering at The University of Western Australia (1997).
  10. M. T. Eismann, C. R. Schwartz, and J. N. C. amd R. J. Huppi, “Comparison of infrared imaging hyperspectral sensors for military target detection applications,” in Proc. SPIE – Int. Soc. Opt. Eng., vol. 2819, pp. 91–101 (1996).
  11. R. W. Basedow, W. S. Aldrich, J. E. Colwell, and W. D. Kinder, “HYDICE system performance – an update,” in Proc. SPIE – Int. Soc. Opt. Eng., vol. 2821, pp. 76–84 (1996).
  12. C. Simi, E. Winter, M. Williams, and D. Driscoll, “Compact airborne spectral sensor,” in Proc. SPIE – Int. Soc. Opt. Eng., vol. 4381, pp. 129–136 (2001).
  13. J. Antoszewski, K. J. Winchester, A. J. Keating, T. Nguyen, K. K. M. B. D. Silva, C. A. Musca, J. M. Dell, L. Faraone, P. Mitra, J. D. Beck, M. R. Skokan, and J. E. Robinson, “A monolithically integrated HgCdTe photodetector and Micro-Electro-mechanical Systems-Based optical filter,” J. Electron. Mat. 34, 716–721 (2005).
    [CrossRef]
  14. M. T. K. Soh, N. Savvides, C. A. Musca, M. P. Martyniuk, and L. Faraone, “Local bonding environment of nitrogen-rich silicon nitride thin films,” J. Appl. Phys. 97, 093,714 (2005).
    [CrossRef]
  15. M. T. K. Soh, C. A. Musca, N. Savvides, J. M. Dell, and L. Faraone, “Evaluation of plasma deposited silicon nitride thin films for micro-systems-technology,” J. Microelectromech. Syst. 14, 971–977 (2005).
    [CrossRef]
  16. M. T. K. Soh, A. C. Fischer-Cripps, N. Savvides, C. A. Musca, and L. Faraone, “Nanoindentation of plasma-deposited nitrogen-rich silicon nitride thin films,” J. Appl. Phys. (submitted June 2005).
    [CrossRef]
  17. M. T. K. Soh, N. Savvides, P. J. Martin, and C. A. Musca, “On the bonding microstructure of amorphous silicon oxide thin films,” Thin Solid Films (submitted April 2005).
  18. R. M. Broudy and V. J. Mazurczyk, Semiconductors and Semimetals, vol. 18, chap. 5 (Academic Press (New York), 1981).
    [CrossRef]
  19. D. K. Arch, R. A. Wood, and D. L. Smith, “High responsivity HgCdTe heterojunction photoconductor,” J. Appl. Phys. 58, 2360–2370 (1985).
    [CrossRef]
  20. M. A. Kinch, S. R. Borrello, B. H. Breazeale, and A. Simmons, “Geometrical enhancement of HgCdTe photoconductive detectors,” Infrared Phys. 17, 137–145 (1977).
    [CrossRef]
  21. T. Ashley and C. T. Elliott, “Accumulation effects at contacts to n-type cadmium-mercury-telluride photoconductors,” Infrared Phys. 22, 367–376 (1982).
    [CrossRef]
  22. D. L. Smith, D. K. Arch, R. A. Wood, and M. W. Scott, “HgCdTe heterojunction contact photoconductor,” Appl. Phys. Lett. 45, 83–85 (1985).
    [CrossRef]
  23. J. F. Siliquini, C. A. Musca, B. D. Nener, and L. Faraone, “Temperature dependence of Hg0.68Cd0.32Te infrared photoconductor performance,” IEEE Trans. Electron Devices 42, 1441–1448 (1995).
    [CrossRef]
  24. P. Capper, Properties of Narrow Gap Cadmium-based Compounds, chap. A6.2, pp. 212–214 (INSPEC (London, U.K.), 1994).
  25. P. E. Petersen, Semiconductors and Semimetals, vol. 18, chap. 4 (Academic Press (New York), 1981).
    [CrossRef]
  26. R. L. Strong, J. D. Luttmer, D. D. Little, T. H. Teherani, and C. R. Helms, “Characterization of anodic sulfide films on Hg0.78Cd0.22Te,” J. Vac. Sci. Technol. A, Vac. Surf. Films 5, 3207–3210 (1987).
    [CrossRef]
  27. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: numerical data and graphical information (Springer, 1999).
    [CrossRef]
  28. F. L. Galeener, “Optical evidence for a network of cracklike voids in amorphous germanium,” Phys. Rev. Lett. 27, 1716–1719 (1971).
    [CrossRef]
  29. E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic Press, Inc., 1991).

Appl. Phys. Lett. (3)

G. Sarusi, B. F. Levine, S. J. Pearton, K. M. S. Bandara, and R. E. Leibenguth, “Improved performance of quantum well infrared photodetectors using random scattering optical coupling,” Appl. Phys. Lett. 64, 960–962 (1994).
[CrossRef]

P. G. Datskos, P. I. Oden, T. Thundat, E. A.Wachter, R. J.Warmack, and S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69, 2986–2988 (1996).
[CrossRef]

D. L. Smith, D. K. Arch, R. A. Wood, and M. W. Scott, “HgCdTe heterojunction contact photoconductor,” Appl. Phys. Lett. 45, 83–85 (1985).
[CrossRef]

IEEE Trans. Electron Devices (3)

J. F. Siliquini, C. A. Musca, B. D. Nener, and L. Faraone, “Temperature dependence of Hg0.68Cd0.32Te infrared photoconductor performance,” IEEE Trans. Electron Devices 42, 1441–1448 (1995).
[CrossRef]

L. J. Kozlowski, G. M.Williams, G. J. Sullivan, C.W. Farley, R. J. Anderson, J. C. D. T. Cheung, W. E. Tennant, and R. E. DeWames, “LWIR 128×128 GaAs/AlGaAs multiple quantum well hybrid focal plane array,” IEEE Trans. Electron Devices 38, 1124–1130 (1991).
[CrossRef]

I. H. Choi and K. D. Wise, “A silicon-thermopile-based infrared sensing array for use in automated manufacturing,” IEEE Trans. Electron Devices 33, 72–79 (1986).
[CrossRef]

Infrared Phys. (2)

M. A. Kinch, S. R. Borrello, B. H. Breazeale, and A. Simmons, “Geometrical enhancement of HgCdTe photoconductive detectors,” Infrared Phys. 17, 137–145 (1977).
[CrossRef]

T. Ashley and C. T. Elliott, “Accumulation effects at contacts to n-type cadmium-mercury-telluride photoconductors,” Infrared Phys. 22, 367–376 (1982).
[CrossRef]

J. Appl. Phys. (3)

D. K. Arch, R. A. Wood, and D. L. Smith, “High responsivity HgCdTe heterojunction photoconductor,” J. Appl. Phys. 58, 2360–2370 (1985).
[CrossRef]

M. T. K. Soh, N. Savvides, C. A. Musca, M. P. Martyniuk, and L. Faraone, “Local bonding environment of nitrogen-rich silicon nitride thin films,” J. Appl. Phys. 97, 093,714 (2005).
[CrossRef]

M. T. K. Soh, A. C. Fischer-Cripps, N. Savvides, C. A. Musca, and L. Faraone, “Nanoindentation of plasma-deposited nitrogen-rich silicon nitride thin films,” J. Appl. Phys. (submitted June 2005).
[CrossRef]

J. Electron. Mat. (1)

J. Antoszewski, K. J. Winchester, A. J. Keating, T. Nguyen, K. K. M. B. D. Silva, C. A. Musca, J. M. Dell, L. Faraone, P. Mitra, J. D. Beck, M. R. Skokan, and J. E. Robinson, “A monolithically integrated HgCdTe photodetector and Micro-Electro-mechanical Systems-Based optical filter,” J. Electron. Mat. 34, 716–721 (2005).
[CrossRef]

J. Microelectromech. Syst. (2)

M. T. K. Soh, C. A. Musca, N. Savvides, J. M. Dell, and L. Faraone, “Evaluation of plasma deposited silicon nitride thin films for micro-systems-technology,” J. Microelectromech. Syst. 14, 971–977 (2005).
[CrossRef]

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication and performance,” J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

J. Vac. Sci. Technol. A, Vac. Surf. Film (1)

R. L. Strong, J. D. Luttmer, D. D. Little, T. H. Teherani, and C. R. Helms, “Characterization of anodic sulfide films on Hg0.78Cd0.22Te,” J. Vac. Sci. Technol. A, Vac. Surf. Films 5, 3207–3210 (1987).
[CrossRef]

Phys. Rev. Lett. (1)

F. L. Galeener, “Optical evidence for a network of cracklike voids in amorphous germanium,” Phys. Rev. Lett. 27, 1716–1719 (1971).
[CrossRef]

Proc. SPIE - Int. Soc. Opt. Eng., (1996) (1)

R. W. Basedow, W. S. Aldrich, J. E. Colwell, and W. D. Kinder, “HYDICE system performance – an update,” in Proc. SPIE – Int. Soc. Opt. Eng., vol. 2821, pp. 76–84 (1996).

Proc. SPIE – Int. Soc. Opt. Eng., (1996) (1)

M. T. Eismann, C. R. Schwartz, and J. N. C. amd R. J. Huppi, “Comparison of infrared imaging hyperspectral sensors for military target detection applications,” in Proc. SPIE – Int. Soc. Opt. Eng., vol. 2819, pp. 91–101 (1996).

Proc. SPIE – Int. Soc. Opt. Eng., (2001) (1)

C. Simi, E. Winter, M. Williams, and D. Driscoll, “Compact airborne spectral sensor,” in Proc. SPIE – Int. Soc. Opt. Eng., vol. 4381, pp. 129–136 (2001).

Prog. Quantum Electron. (1)

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003).
[CrossRef]

Semiconductors and Semimetals (1)

P. E. Petersen, Semiconductors and Semimetals, vol. 18, chap. 4 (Academic Press (New York), 1981).
[CrossRef]

Thin Solid Films (1)

M. T. K. Soh, N. Savvides, P. J. Martin, and C. A. Musca, “On the bonding microstructure of amorphous silicon oxide thin films,” Thin Solid Films (submitted April 2005).

Other (7)

R. M. Broudy and V. J. Mazurczyk, Semiconductors and Semimetals, vol. 18, chap. 5 (Academic Press (New York), 1981).
[CrossRef]

M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. (CRC Press, 2002).

R. A. Wood, C. J. Han, and P. W. Kruse, “Integrated uncooled infrared detector imaging arrays,” in Technical Digest. IEEE Solid-State Sensor and Actuator Workshop (Cat. No.92TH0403-X), pp. 132–135 (1992).
[CrossRef]

C. A. Musca, “Photoconductive infrared detector technology based on epitaxially-grown mercury cadmium telluride heterostructures,” Ph.D. thesis, Department of Electrical and Electronic Engineering at The University of Western Australia (1997).

S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: numerical data and graphical information (Springer, 1999).
[CrossRef]

P. Capper, Properties of Narrow Gap Cadmium-based Compounds, chap. A6.2, pp. 212–214 (INSPEC (London, U.K.), 1994).

E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic Press, Inc., 1991).

Supplementary Material (1)

» Media 1: GIF (321 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Fabrication sequence of photoconductors: (a) mesa etching for the photoconductors, (b) insulator deposition and etching for metal contacts, and (c) metal deposition/liftoff.

Fig. 2.
Fig. 2.

Fabrication sequence of micro-filters: (a) bottom DBR deposition and polyimide sacrificial layer deposition, (b) deposition of a-SiN x H y and top DBR, (c) metal deposition, and (d) membrane definition and release.

Fig. 3.
Fig. 3.

Microscope image of a released (tuneable) micro-filter.

Fig. 4.
Fig. 4.

Schematic of the spectrometric measurement setup. S: optical source; P: pinhole; L1-L3: lenses; Ch: chopper; CM: concave mirrors; Gr: diffraction grating; M: mirror; O: objective lens; DUT: device under test.

Fig. 5.
Fig. 5.

(a) Photoconductor responsivity as a function of wavelength at T = 290 K, and (b) noise as a function of frequency. All measurements were taken at various voltage biases between 0.07 and 2.5 V.

Fig. 6.
Fig. 6.

Photoconductor responsivity at λ= 2.4 μm as a function of measurement temperature and applied bias (a) before and (b) after a 1-hour bake at 125 °C.

Fig. 7.
Fig. 7.

Photoconductor (a) τeff and (b) D * at λ = 2.4 μm as a function of voltage bias at T = 290 K. Shown alongside are the theoretical effective lifetime τ Auger,radiative (taking into account Auger and radiative recombination processes) and Dthermal* [Eq. (5)], respectively.

Fig. 8.
Fig. 8.

Measured (points) and modelled (lines) transmission of two etalon test structures with varying cavity width. Amplitude deviations for λ < 1.5 μm are caused by (optical gap) absorption, which was not included in the model.

Fig. 9.
Fig. 9.

Micro-filter spectral tuning characteristic for 1.7 < λ < 2.2 μm and 0 < VD < 8.8 V. Δz is the membrane displacement. Each frame shows the theoretical response (solid line) using the optical model and parameters in Table 2, and the experimental measurements (dots). The inset shows a representation of the displacement motion of the filter, to scale vertically but, to allow representation here, not to scale laterally. File size: 325 kB

Fig. 10.
Fig. 10.

(a) Micro-filter relative displacement and (b) FWHM of resonant peak vs drive voltage.

Tables (2)

Tables Icon

Table 1. Fixed filter optical configuration including the Cauchy parameters for refractive index [Eq. (6)] and thickness of each material.

Tables Icon

Table 2. Tuneable micro-filter optical configuration including the Cauchy parameters for refractive index [Eq. (6)] and thickness of each material.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( λ ) V ( λ ) P ( λ ) ,
( λ ) = η V b λ hc 1 wld τ e ff n 0 ,
NEP V n ( λ ) ,
D * ( wl Δ f ) 1 / 2 NEP ,
D thermal * = ηλ 2 hc ( τ e ff n o d ) 1 / 2 .
n ( λ ) = A + B λ 2 ,

Metrics