Abstract

We demonstrate a novel distributed fiber Raman amplified bus topology used for WDM transmission over 35 km of single-mode fiber by use of a multiwavelength Raman pump laser and eight Fiber Bragg gratings (FBGs). This topology reduces the number of addressing wavelengths needed at the head of the bus. Furthermore, by relocating the FBGs’ wavelengths of a first section, it is obtained power transparency at the end of the overall bus, without requiring any additional pump source. We show how the topology allows the received powers from the first section sensors to be equalized and partially amplify the overall network. We investigate how the performance depends on the launched pump power. Results obtained with this new configuration are compared with those achieved in a previously reported optically amplified bus topology.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Hernández-Lorenzo, M. López-Amo, and P. Urquhart, “Single and double distributed optical amplifier fiber bus networks with wavelength division multiplexing for photonic sensors,” J. Lightwave Technol. 16, 485-489 (1998).
    [CrossRef]
  2. A. Dandridge, and C. Kirkendell, “Passive fiber optic sensor networks,” in Handbook of Optical Fiber Sensing Technology, J. M. López-Higuera, ed. (John Wiley, 2002), Chap. 21
  3. P. E. Green, Fiber Optic Networks, Englewood Cliffs, ed. (NJ: Prentice Hall, 1992), 357-369.
  4. L. T. Blair and S. A. Cassidy, “Wavelength division multiplexed sensor network using Bragg fiber reflection gratings,” Electron. Lett. 28, 1734-1735 (1992).
    [CrossRef]
  5. B. Vizoso, I. R. Matías, M. López-Amo, M. A. Muriel, and J. M. López-Higuera, “Design and application of double amplified recirculating ring structure for hybrid fiber buses,” Opt. Quantum Electron. 27, 847-857 (1995).
    [CrossRef]
  6. M. López-Amo, L. T. Blair, and P. Urquhart, “Wavelength-division multiplexed distributed optical fiber amplifier bus network for data and sensors,” Opt. Lett. 18, 1159-1161 (1993).
    [CrossRef] [PubMed]
  7. J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express 12, 4372-4377 (2004). <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4372>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4372</a>.
    [CrossRef] [PubMed]
  8. T. J. Ellingham, J. D. Ania-Castañón, S. K. Turitsyn, A. Pustovskikh, S. Kobtsev, and M. P. Fedoruk, “Dual-pump Raman amplification with increased flatness using modulation instability,” Opt. Express 13, 1079-1084 (2005). <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1079>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1079</a>.
    [CrossRef] [PubMed]
  9. J. H. Lee, Y. M. Chang, Y. G. Han, et al., “Raman amplifier-based long-distance remote, strain and temperature sensing system using an Erbium-Doped Fiber and a Fiber Bragg Grating,” Opt. Express 12, 3515-3520 (2004). <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3515>htt://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3515</a>.
    [CrossRef] [PubMed]
  10. Y. Emori, K. Tanaka, and S. Namiki, “100nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit,” Electron. Lett. 1355-1356 (1999).
    [CrossRef]
  11. S. Diaz, G. Lasheras, M. López-Amo, P. Urquhart, C. Jáuregui, and J. M. López-Higuera, “Wavelength-division- multiplexed distributed fiber raman amplifier bus network for sensors,” in Proc. 17th Int. Conf. Optical Fibre Sensors (OFS-17), Proc. SPIE 5855, 242-244 (2005).
    [CrossRef]
  12. S. Diaz, G. Lasheras, P. Urquhart, C. Jáuregui, J. M. López-Higuera, and M. López-Amo, "Improved distributed fiber raman amplifier bus network with wavelength division multiplexing for sensors,” (to be published).
  13. J. Bromage, P. J. Winzer, and R. J. Essiambre, “Multiple path interference and its impact on system design,” in Raman Amplifiers for Telecommunications 2, M. N. Islam ed. (Springer, 2004), Chap. 15.
    [CrossRef]
  14. L. Grüner-Nielsen and Y. Qian, “Dispersion-compensating fibers for Raman applications,” in Raman Amplifiers for Telecommunications 1, M. N. Islam ed. (Springer, 2004), Chap. 6.
  15. P. B. Hansen, G. Jacobovitz-Veselka, L. Grüner-Nielsen, and A. J. Stentz, “Raman amplification for loss compensation in dispersion compensating fibre modules,” Electron. Lett. 34, 1136-1137 (1998).
    [CrossRef]
  16. Y. Emori, Y. Akasaka, and S. Namiki, “Broadband lossless DCF using Raman amplification pumped by multichannel WDM laser diodes,” Electron. Lett. 34, 2145-2146 (1998).
    [CrossRef]
  17. A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, et al., “2.5 Tb/s (64 x 42.7 Gb/s) Transmission over 40 x 100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans,” in Proc. of OFC’02,(Anaheim, Calif., 2002), pp. FC2-1-FC2-3.
  18. B. Zhu, L. Leng, L. E. Nelson, et al., “3.2 Tb/s (80 x 42.7 Gb/s) Transmission over 20 x 100 km of non-zero dispersion fibre with simultaneous C + L-band dispersion compensation,” in Proc. of OFC’02, (Anaheim, Calif., 2002), pp. FC8-1-FC8-3.

Electron. Lett.

L. T. Blair and S. A. Cassidy, “Wavelength division multiplexed sensor network using Bragg fiber reflection gratings,” Electron. Lett. 28, 1734-1735 (1992).
[CrossRef]

Y. Emori, K. Tanaka, and S. Namiki, “100nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit,” Electron. Lett. 1355-1356 (1999).
[CrossRef]

P. B. Hansen, G. Jacobovitz-Veselka, L. Grüner-Nielsen, and A. J. Stentz, “Raman amplification for loss compensation in dispersion compensating fibre modules,” Electron. Lett. 34, 1136-1137 (1998).
[CrossRef]

Y. Emori, Y. Akasaka, and S. Namiki, “Broadband lossless DCF using Raman amplification pumped by multichannel WDM laser diodes,” Electron. Lett. 34, 2145-2146 (1998).
[CrossRef]

Handbook of Optical Fiber Sensing Techno

A. Dandridge, and C. Kirkendell, “Passive fiber optic sensor networks,” in Handbook of Optical Fiber Sensing Technology, J. M. López-Higuera, ed. (John Wiley, 2002), Chap. 21

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

B. Vizoso, I. R. Matías, M. López-Amo, M. A. Muriel, and J. M. López-Higuera, “Design and application of double amplified recirculating ring structure for hybrid fiber buses,” Opt. Quantum Electron. 27, 847-857 (1995).
[CrossRef]

Proc. 17th Int. Conf. Optical Fibre Sens

S. Diaz, G. Lasheras, M. López-Amo, P. Urquhart, C. Jáuregui, and J. M. López-Higuera, “Wavelength-division- multiplexed distributed fiber raman amplifier bus network for sensors,” in Proc. 17th Int. Conf. Optical Fibre Sensors (OFS-17), Proc. SPIE 5855, 242-244 (2005).
[CrossRef]

Proc. of OFC’02

A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, et al., “2.5 Tb/s (64 x 42.7 Gb/s) Transmission over 40 x 100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans,” in Proc. of OFC’02,(Anaheim, Calif., 2002), pp. FC2-1-FC2-3.

B. Zhu, L. Leng, L. E. Nelson, et al., “3.2 Tb/s (80 x 42.7 Gb/s) Transmission over 20 x 100 km of non-zero dispersion fibre with simultaneous C + L-band dispersion compensation,” in Proc. of OFC’02, (Anaheim, Calif., 2002), pp. FC8-1-FC8-3.

Raman Amplifiers for Telecommunications

J. Bromage, P. J. Winzer, and R. J. Essiambre, “Multiple path interference and its impact on system design,” in Raman Amplifiers for Telecommunications 2, M. N. Islam ed. (Springer, 2004), Chap. 15.
[CrossRef]

L. Grüner-Nielsen and Y. Qian, “Dispersion-compensating fibers for Raman applications,” in Raman Amplifiers for Telecommunications 1, M. N. Islam ed. (Springer, 2004), Chap. 6.

Other

S. Diaz, G. Lasheras, P. Urquhart, C. Jáuregui, J. M. López-Higuera, and M. López-Amo, "Improved distributed fiber raman amplifier bus network with wavelength division multiplexing for sensors,” (to be published).

P. E. Green, Fiber Optic Networks, Englewood Cliffs, ed. (NJ: Prentice Hall, 1992), 357-369.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Original wavelength-division-multiplexed distributed fiber Raman amplifier bus network. S1–S4 location of sensors. (b) New distributed fiber Raman amplifier bus network adding 4 sensors. S1–S8 location of sensors. The fiber lengths and the grating peak wavelengths and reflectivities are indicated.

Fig. 2.
Fig. 2.

(a) Measured Raman gain profile for the first section until sensor S4 using 1.1 W pump power. (b) Measured Raman gain profile for the second section until sensor S8 using 1.1 W pump power.

Fig. 3.
Fig. 3.

(a) Amplified output power obtained in the first section with an applied pump power of 1.1 W. (b) Amplified output power obtained in the second section with an applied pump power of 1.1 W.

Fig. 4.
Fig. 4.

Output signals coming from the first section to the second.

Tables (1)

Tables Icon

Table 1. Correct Sensors’ Position and Sensors’ Output Powers

Metrics