Abstract

We demonstrate optical bistability in a Silicon-On-Insulator two-bus ring resonator with input powers as low as 0.3mW . We evaluate the importance of the different nonlinear contributions and derive time constants for carrier and thermal relaxation effects. In some cases, we also observe pulsation due to interaction between the dominant nonlinear effects. Such a behaviour may be problematic for possible memory and switching operations. Alternatively, it could be used for (tunable) pulse generation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in Silicon-on-Insulator fabricated with CMOS Technology,�?? IEEE J. Lightwave Technol. 23, 401�??412 (2005).
    [CrossRef]
  2. D. Taillaert, P. Bienstman, and R. Baets, �??Compact efficient broadband grating coupler for silicon-on-insulator waveguides,�?? Opt. Lett. 29, 2749�??2751 (2004).
    [CrossRef] [PubMed]
  3. V. Almeida and M. Lipson, �??Optical bistability on a silicon chip,�?? Opt. Lett. 29, 2387�??2389 (2004).
    [CrossRef] [PubMed]
  4. P. Barclay, K. Srinivasan, and O. Painter, �??Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,�?? Opt. Express 13, 801�??820 (2005), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-801.> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-801</a>.
    [CrossRef] [PubMed]
  5. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, �??Optical bistable switching action of Si high-Q photonic-crystal nanocavities,�?? Opt. Express 13, 2678�??2687 (2005), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2678.> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2678</a>.
    [CrossRef] [PubMed]
  6. G. Priem, P. Bienstman, G. Morthier, and R. Baets, �??Resonator-based all-optical Kerr-nonlinear phase shifting: design and limitations,�?? J. Appl. Phys. 97, 023104 (2005).
    [CrossRef]
  7. A. Melloni, F. Morichetti, and M. Martinelli, �??Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,�?? Opt. Quantum Electron. 35, 365�??379 (2003).
    [CrossRef]
  8. T. K. Liang and H. K. Tsang, �??Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 84, 2745�??2747 (2004).
    [CrossRef]
  9. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, �??Influence of nonlinear absorption on Raman amplification in silicon waveguides,�?? Opt. Express 12, 2774-2780 (2004), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774.>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774</a>.
    [CrossRef] [PubMed]
  10. D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, �??Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,�?? Appl. Phys. Lett. 86, 071115 (2005).
    [CrossRef]
  11. H. Gibbs, Optical bistability: controlling light with light (Academic, Orlando, 1985).

Appl. Phys. Lett. (2)

T. K. Liang and H. K. Tsang, �??Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 84, 2745�??2747 (2004).
[CrossRef]

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, �??Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,�?? Appl. Phys. Lett. 86, 071115 (2005).
[CrossRef]

IEEE J. Lightwave Technol. (1)

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in Silicon-on-Insulator fabricated with CMOS Technology,�?? IEEE J. Lightwave Technol. 23, 401�??412 (2005).
[CrossRef]

J. Appl. Phys. (1)

G. Priem, P. Bienstman, G. Morthier, and R. Baets, �??Resonator-based all-optical Kerr-nonlinear phase shifting: design and limitations,�?? J. Appl. Phys. 97, 023104 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

A. Melloni, F. Morichetti, and M. Martinelli, �??Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,�?? Opt. Quantum Electron. 35, 365�??379 (2003).
[CrossRef]

Other (1)

H. Gibbs, Optical bistability: controlling light with light (Academic, Orlando, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Physical picture of the nonlinear interactions in Silicon for wavelengths around half the band gap.

Fig. 2.
Fig. 2.

Example of a ring resonator structure fabricated through deep UV lithography.

Fig. 3.
Fig. 3.

(a) Normalized transmission of the pass and the drop port in the linear regime. (b) Detailed measurement around the resonance wavelength λc = 1556.97nm

Fig. 4.
Fig. 4.

Normalized transmission of the drop port for different input powers. The linear pass and drop transmissions are indicated as reference. Bistability is obtained for powers equal and above 0.277mW

Fig. 5.
Fig. 5.

(a) Nonlinear resonance transmission Tmax and (b) resonance shift ∆λ at the drop port as a function of the cavity power.

Fig. 6.
Fig. 6.

Different nonlinear contributions to the refractive index change inside the ring resonator as function of the cavity power.

Fig. 7.
Fig. 7.

Normalized average transmission and standard deviation at the drop port for an input power of 0.76mW . The blue curve corresponds to a (manual) wavelength sweep from low to high, the violet curve from high to low.

Metrics