Abstract

A simple and efficient optical interference method for fabricating high quality two- and three-dimensional (2D and 3D) periodic structures is demonstrated. Employing multi-exposure of two-beam interference technique, different types of periodic structures are created depending on the number of exposure and the rotation angle of the sample for each exposure. Square and hexagonal 2D structures are fabricated by a multi-exposure of two-beam interference pattern with a rotation angle of 90° and 60° between two different exposures, respectively. Three-exposure, in particular, results in different kinds of 3D structures, with close lattice constants in transverse and longitudinal directions, which is difficult to be obtained by the commonly used multi-beam interference technique. The experimental results obtained with SU-8 photoresist are well in agreement with the theoretical predictions. Multi-exposure of two-beam interference technique should be very useful for fabrication of photonic crystals.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987)
    [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, D. J. Norris, �??On-chip natural assembly of silicon photonic bandgap crystals,�?? Nature 414, 289-293 (2001).
    [CrossRef] [PubMed]
  4. Y. -H. Ye, S. Badilescu, V. -V. Truong, �??Large-scale ordered macroporous SiO2 thin films by a template-directed method,�?? Appl. Phys. Lett. 81, 616-618 (2002).
    [CrossRef]
  5. V. Berger, O. Gauthier-Lafaye, E. Costard, �??Photonic band gaps and holography,�?? J. Appl. Phys. 82, 60-64 (1997).
    [CrossRef]
  6. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, �??Fabrication of photonic crystals for the visible spectrum by holographic lithography,�?? Nature 404, 53-56 (2000).
    [CrossRef] [PubMed]
  7. S. Shoji, S. Kawata, �??Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,�?? Appl. Phys. Lett. 76, 2668-2670 (2000).
    [CrossRef]
  8. A. Shishido, I. B. Diviliansky, I. C. Khoo, T. S. Mayer, S. Nishimura, G. L. Egan, T. E. Mallouk, �??Direct fabrication of two-dimensional titania arrays using interference photolithography,�?? Appl. Phys. Lett. 79, 3332-3334 (2001).
    [CrossRef]
  9. T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, �??Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,�?? Appl. Phys. Lett. 79, 725-727 (2001).
    [CrossRef]
  10. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, T. J. Bunning, �??Holographic formation of electro-optical polymer-liquid crystal photonic crystals,�?? Adv. Mater. 14, 187-191 (2002).
    [CrossRef]
  11. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. V. Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, M. Wegener, �??Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,�?? Appl. Phys. Lett. 82, 1284-1286 (2003).
    [CrossRef]
  12. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, H. Misawa, �??Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,�?? Appl. Phys. Lett. 82, 2758-2760 (2003).
    [CrossRef]
  13. Y. C. Zhong, S. A. Zhu, H. M. Su, H. Z. Wang, J. M. Chen, Z. H. Zeng, Y. L. Chen, �??Photonic crystal with diamondlike structure fabricated by holographic lithography,�?? Appl. Phys. Lett. 87, 061103 (2005).
    [CrossRef]
  14. H. B. Sun, S. Matsuo, H. Misawa, �??Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,�?? Appl. Phys. Lett. 74, 786-788 (1999).
    [CrossRef]
  15. M. Straub, M. Gu, �??Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,�?? Opt. Lett. 27, 1824-1826 (2002).
    [CrossRef]
  16. V. Mizeikis, K. K. Seet, S. Juodkazis, H. Misawa, �??Three-dimensional woodpile photonic crystal templates for the infrared spectral range,�?? Opt. Lett. 29, 2061-2063 (2004)
    [CrossRef] [PubMed]
  17. M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, C. M. Soukoulis, �??Direct laser writing of three-dimensionalphotonic-crystal templates for telecommunications,�?? Nature Mater. 3, 444-447 (2004).
    [CrossRef]
  18. X. Yang, L. Cai, Q. Liu, �??Polarization optimization in the interference of four umbrellalike symmetric beams for making three-dimensional periodic microstructures,�?? Appl. Opt. 32, 6894-6900 (2002).
    [CrossRef]
  19. H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, H. Z. Wang, �??Effects of polarization on laser holography for microstructure fabrication,�?? Phys. Rev. E 67, 056619 (2003).
    [CrossRef]
  20. S. C. Kitson, W. L. Barnes, J. R. Sambles, �?? The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,�?? IEEE Photon. Technol. Lett. 8, 1662-1664 (1996).
    [CrossRef]
  21. L. Pang, W. Nakagawa, Y. Fainman:, �??Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write,�?? Appl. Opt. 42, 5450-5456 (2003).
    [CrossRef] [PubMed]
  22. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, �??Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,�?? Opt. Express 13, 5331-5337 (2005), <a href= "http://www.opticsinfobase.org/abstract.cfm?id=84897">http://www.opticsinfobase.org/abstract.cfm?id=84897</a>
    [CrossRef] [PubMed]
  23. C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. -J. Han, S. Yang, �??Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,�?? Appl. Phys. Lett. 84, 5434-5436 (2004).
    [CrossRef]

Adv. Mater. (1)

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, T. J. Bunning, �??Holographic formation of electro-optical polymer-liquid crystal photonic crystals,�?? Adv. Mater. 14, 187-191 (2002).
[CrossRef]

Appl. Opt. (2)

X. Yang, L. Cai, Q. Liu, �??Polarization optimization in the interference of four umbrellalike symmetric beams for making three-dimensional periodic microstructures,�?? Appl. Opt. 32, 6894-6900 (2002).
[CrossRef]

L. Pang, W. Nakagawa, Y. Fainman:, �??Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write,�?? Appl. Opt. 42, 5450-5456 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (9)

S. Shoji, S. Kawata, �??Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,�?? Appl. Phys. Lett. 76, 2668-2670 (2000).
[CrossRef]

A. Shishido, I. B. Diviliansky, I. C. Khoo, T. S. Mayer, S. Nishimura, G. L. Egan, T. E. Mallouk, �??Direct fabrication of two-dimensional titania arrays using interference photolithography,�?? Appl. Phys. Lett. 79, 3332-3334 (2001).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, �??Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,�?? Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. -J. Han, S. Yang, �??Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,�?? Appl. Phys. Lett. 84, 5434-5436 (2004).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. V. Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, M. Wegener, �??Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,�?? Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, H. Misawa, �??Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,�?? Appl. Phys. Lett. 82, 2758-2760 (2003).
[CrossRef]

Y. C. Zhong, S. A. Zhu, H. M. Su, H. Z. Wang, J. M. Chen, Z. H. Zeng, Y. L. Chen, �??Photonic crystal with diamondlike structure fabricated by holographic lithography,�?? Appl. Phys. Lett. 87, 061103 (2005).
[CrossRef]

H. B. Sun, S. Matsuo, H. Misawa, �??Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,�?? Appl. Phys. Lett. 74, 786-788 (1999).
[CrossRef]

Y. -H. Ye, S. Badilescu, V. -V. Truong, �??Large-scale ordered macroporous SiO2 thin films by a template-directed method,�?? Appl. Phys. Lett. 81, 616-618 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. C. Kitson, W. L. Barnes, J. R. Sambles, �?? The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,�?? IEEE Photon. Technol. Lett. 8, 1662-1664 (1996).
[CrossRef]

J. Appl. Phys. (1)

V. Berger, O. Gauthier-Lafaye, E. Costard, �??Photonic band gaps and holography,�?? J. Appl. Phys. 82, 60-64 (1997).
[CrossRef]

Nature (2)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, �??Fabrication of photonic crystals for the visible spectrum by holographic lithography,�?? Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, D. J. Norris, �??On-chip natural assembly of silicon photonic bandgap crystals,�?? Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

Nature Mater. (1)

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, C. M. Soukoulis, �??Direct laser writing of three-dimensionalphotonic-crystal templates for telecommunications,�?? Nature Mater. 3, 444-447 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. E (1)

H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, H. Z. Wang, �??Effects of polarization on laser holography for microstructure fabrication,�?? Phys. Rev. E 67, 056619 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987)
[CrossRef] [PubMed]

S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup of multi-exposure two-beam interference technique used for fabrication of 2D and 3D periodic structures.

Fig. 2.
Fig. 2.

Calculated iso-intensity distribution (Iiso =60%Imax ) of three-exposure of two-beam interference pattern with λ = 514 nm, θ = 15°. Three exposures are realized at angles: (a): (α, β) = (90°, 0°), (0°, 45°), and (180°, 45°); (b): (α, β) = (90°, 0°), (0°, 30°), and (180°, 30°); and (c): (α, β) = (60°, 0°), (0°, 30°), and (180°, 30°).

Fig. 3.
Fig. 3.

SEM images of 2D periodic structures, Λ = 1μm (θ = 9.35°, λ= 325nm): (a) square structure obtained by two-exposure at α= 0° and 90°; (b) hexagonal structure obtained by two-exposure at α= 0° and 60°; (c) hexagonal structure obtained by three-exposure at α= -60°, 0° and 60°.

Fig. 4.
Fig. 4.

SEM images of 3D periodic structures, Λ = 2μm (θ= 7.38°, λ= 514nm), fabricated by three exposures: (a) (α, β) = (90°, 0°), (0°, 45°), and (180°, 45°); (b) (α, β) = (60°, 0°), (0°, 30°), and (180°, 30°); (c) side view of (b). Insets are theoretical calculation results for comparison.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E 1 α β , 2 α β = E 10,20 cos [ k z cos ( θ β ) ± k sin ( θ β ) ( x cos α + y sin α ) ω t ] ,
I α β = E 1 α β + E 2 α β 2 = 2 E 0 2 cos 2 [ k sin θ ( z sin β + ( x cos α + y sin α ) cos β ) ] ,
Λ = λ 2 sin θ ,
I multi-exposure = i I α i β i ,

Metrics