Abstract

We demonstrate a compact system, incorporating a 32-element linear array of ultraviolet (290 nm and 340 nm) light-emitting diodes (LEDs) and a multi-anode photomultiplier tube, to the in-flight fluorescence detection of aerosolized particles, here containing the biological molecules tryptophan and NADH. This system illustrates substantial advances in the growth and fabrication of new semiconductor UV light emitting devices and an evolution in packaging details for LEDs tailored to the bio-aerosol warning problem. Optical engineering strategies are employed which take advantage of the size and versatility of light-emitting diodes to develop a truly compact fluorescence detector.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Joseph R. Lakowicz in Principles of Fluorescence Spectroscopy, (Kluwer Academic / Plenum Publishers, New York, NY, 1999).
  2. S.C. Hill, R.G. Pinnick, S. Niles, Y.L. Pan, S. Holler, R.K. Chang, J. Bottiger, B.T. Chen, C.S. Orr and G. Feather, �??Real-Time Measurement of Fluorescence Spectra from Single Airborne Biological Particles,�?? Field Anal. Chem. and Tech. 3 (4-5), 221-239 (1999).
    [CrossRef]
  3. V. Sivaprakasam, A.L. Huston, C. Scotto and J.D. Eversole, �??Multiple UV wavelength excitation and fluorescence of bioaerosols,�?? Opt. Express 12, 19, 4457-4466 (2004).
    [CrossRef] [PubMed]
  4. P.P. Hairston, J. Ho and F.R. Quant, �??Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,�?? J. Aerosol Sci. 28, 3, 471-482 (1997).
    [CrossRef] [PubMed]
  5. L.M. Brosseau, D. Vesley, N. Rice, K. Goodell, M. Nellis and P. Hairston, �??Differences in Detected Fluorescence Among Several Bacterial Species Measured with a Direct-Reading Particle Sizer and Fluorescence Detector,�?? Aerosol Sci. and Tech. 32, 545-558 (2000).
    [CrossRef]
  6. P.H. Kaye, W.R. Stanley, E. Hirst, E.V. Foot, K.L. Baxter and S.J. Barrington, �??Single particle multichannel bio-aerosol fluorescence sensor,�?? Opt. Express 13, 10, 3583-3593 (2005).
    [CrossRef] [PubMed]
  7. Y.L. Pan, J. Hartings, R.G. Pinnick, S.C. Hill, J. Halverson and R.K. Chang, �??Single-Particle Fluorescence Spectrometer for Ambient Aerosols,�?? Aerosol Sci. and Tech. 37, 628-639 (2003).
    [CrossRef]
  8. Y.L. Pan, V. Boutou, J.R. Bottiger, S.S. Zhang, J.P. Wolf and R.K. Chang, �??A Puff of Air Sorts Bioaerosols for Pathogen Identification,�?? Aerosol Sci. and Tech. 38, 598-602 (2004).
    [CrossRef]
  9. V. Adivarahan, S. Wu, W.H. Sun, V. Mandavilli, M.S. Shatalov, G. Simin, J.W. Yang, H.P. Maruska and M.A. Khan, �??High-power deep ultraviolet light-emitting diodes based on a micro-pixel design,�?? Appl. Phys. Lett. 85, 10, 1838-1840, (2004).
    [CrossRef]
  10. S.R. Jeon, M. Gherasimova, Z. Ren, J. Su, G. Cui, J. Han, H. Peng, Y.K. Song, A.V. Nurmikko, L. Zhou, W. Goetz and M. Krames. �??High Performance AlGaInN Ultraviolet Light-Emitting Diode at the 340nm Wavelength,�?? Jpn. J. Appl. Phys. 43, 11A, L1409-1412 (2004).
    [CrossRef]
  11. Y.L. Pan, V. Boutou, R.K. Chang, I. Ozden, K. Davitt and A.V. Nurmikko, �??Application of light-emitting diodes for fluorescence detection,�?? Opt. Lett. 28, 18, 1707-1709 (2003).
    [CrossRef] [PubMed]
  12. Jesse Mohn, Department of Applied Physics, Yale University (unpublished results, 2003).
  13. S.C. Hill, R.G. Pinnick, S. Niles, N.F. Fell Jr., Y.L. Pan, J. Bottiger, B.V. Bronk, S. Holler and R.K. Chang, �??Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,�?? Appl. Opt. 40, 18, 3005-3013 (2001).
    [CrossRef]
  14. Y.L. Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R.K. Chang, R.G. Pinnick, J.P. Wolf, �??High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,�?? Rev. Sci. Instrum. 72, 3, 1831-1836 (2001); VTech Engineering, Andover MA
    [CrossRef]
  15. J.R. Bottiger and P.J. DeLuca, �??Low Concentration Aerosol Generator,�?? United States Patent No. 5,918,254 (1999).

Aerosol Sci. and Tech.

Y.L. Pan, J. Hartings, R.G. Pinnick, S.C. Hill, J. Halverson and R.K. Chang, �??Single-Particle Fluorescence Spectrometer for Ambient Aerosols,�?? Aerosol Sci. and Tech. 37, 628-639 (2003).
[CrossRef]

Y.L. Pan, V. Boutou, J.R. Bottiger, S.S. Zhang, J.P. Wolf and R.K. Chang, �??A Puff of Air Sorts Bioaerosols for Pathogen Identification,�?? Aerosol Sci. and Tech. 38, 598-602 (2004).
[CrossRef]

L.M. Brosseau, D. Vesley, N. Rice, K. Goodell, M. Nellis and P. Hairston, �??Differences in Detected Fluorescence Among Several Bacterial Species Measured with a Direct-Reading Particle Sizer and Fluorescence Detector,�?? Aerosol Sci. and Tech. 32, 545-558 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

V. Adivarahan, S. Wu, W.H. Sun, V. Mandavilli, M.S. Shatalov, G. Simin, J.W. Yang, H.P. Maruska and M.A. Khan, �??High-power deep ultraviolet light-emitting diodes based on a micro-pixel design,�?? Appl. Phys. Lett. 85, 10, 1838-1840, (2004).
[CrossRef]

Field Anal. Chem. and Tech.

S.C. Hill, R.G. Pinnick, S. Niles, Y.L. Pan, S. Holler, R.K. Chang, J. Bottiger, B.T. Chen, C.S. Orr and G. Feather, �??Real-Time Measurement of Fluorescence Spectra from Single Airborne Biological Particles,�?? Field Anal. Chem. and Tech. 3 (4-5), 221-239 (1999).
[CrossRef]

J. Aerosol Sci.

P.P. Hairston, J. Ho and F.R. Quant, �??Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,�?? J. Aerosol Sci. 28, 3, 471-482 (1997).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys.

S.R. Jeon, M. Gherasimova, Z. Ren, J. Su, G. Cui, J. Han, H. Peng, Y.K. Song, A.V. Nurmikko, L. Zhou, W. Goetz and M. Krames. �??High Performance AlGaInN Ultraviolet Light-Emitting Diode at the 340nm Wavelength,�?? Jpn. J. Appl. Phys. 43, 11A, L1409-1412 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

Y.L. Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R.K. Chang, R.G. Pinnick, J.P. Wolf, �??High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,�?? Rev. Sci. Instrum. 72, 3, 1831-1836 (2001); VTech Engineering, Andover MA
[CrossRef]

United States Patent

J.R. Bottiger and P.J. DeLuca, �??Low Concentration Aerosol Generator,�?? United States Patent No. 5,918,254 (1999).

Other

Jesse Mohn, Department of Applied Physics, Yale University (unpublished results, 2003).

Joseph R. Lakowicz in Principles of Fluorescence Spectroscopy, (Kluwer Academic / Plenum Publishers, New York, NY, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Electroluminescence spectra on a semi-log scale taken under 1 kA/cm2 injection current from typical elements of a 290 nm and 340 nm linear array. Light output axes scaled and not comparable for different devices. Inset shows array geometry and individual LED element dimensions. (b) Photographic image of packaged array.

Fig. 2.
Fig. 2.

Top-view schematics of two compact LED array-based detection systems. (a) Optical filter-based and (b) spectroscopic fluorescence detection.

Fig. 3.
Fig. 3.

Optical filter-based system response to fluorophore-doped water droplets. (a) Real-time fluorescence channel recordings for single NADH particles (with two non-functioning 340nm LED array elements after the 1 msec mark) shown for two concentration levels measured against pure H2O, and (b) the measured fluorescence to scatter ratios for both the 290nm array targeting tryptophan (closed circles) and the 340nm array targeting NADH (open circles).

Fig. 4.
Fig. 4.

Single particle fluorescence spectra. (a) Ten sequential 0.025% NADH-doped water droplets under 340 nm excitation. (b) 290 nm excitation of single 0.5% tryptophan-doped water droplets with (lower curve) and without (upper curve) an additional LED-scatter blocking filter. Inset shows average over 500 particles of 6 μm diameter dry tryptophan.

Metrics