Abstract

A two-fiber probe interrogated by a spectrometer for the measurement of fluorescence emitted from a thin layer of membrane is investigated. For a specific spectrometer, an optimum fiber probe design exists to maximize the sample-probe-spectrometer system performance. In this paper, for the first time, we report that by separating the front end faces of the receiving and illuminating fibers, spectrum resolution and fluorescence collection capability may be simultaneously enhanced. Theoretical and experimental results reveal that such an optimized system collects more emitted rays with incident angles that fall within the full acceptance angle of the slit. The relative collection efficiency increases to 63% when the membrane is positioned very close to the probe tip. By adjusting positions of the receiving fiber and the membrane sample to an optimized combination, we also prove that the optimum performance of spectrometer can be achieved.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Dakin and B. Culshaw, eds., Optical Fiber Sensors (Artech House Inc., 1997), Vol. 4, Ch. 7.
  2. <a href="http://www.oceanoptics.com/homepage.asp">http://www.oceanoptics.com/homepage.asp</a>.
  3. U. Utzinger and R. R. Richards-Kortum, �??Fiber optic probes for biomedical optical spectroscopy,�?? J. Bio. Opt. 8, 121-147 (2003).
    [CrossRef]
  4. R. A. Schwarz, D. Arifler, S. K. Change, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, �??Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,�?? Opt. Lett. 30, 1159-1161 (2005).
    [CrossRef] [PubMed]
  5. T. Papaioannou, N. W. Preyer, Q. Fang, A. Brightwell, M. Carnohan, G. Cottone, L. R. Jones, and L. Marcu, �??Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm,�?? Appl. Opt. 43, 2846-2860 (2004).
    [CrossRef] [PubMed]
  6. R. L. McCreery, M. Fleischmann, and P. Hendra, �??Fiber Optic Probe for Remote Raman Spectrometry,�?? Anal. Chem. 55, 148-150 (1983).
    [CrossRef]
  7. C. Sluszny, V. V. Gridin, V. Bulatov, and I. Schechter, �??Polymer film sensor for sampling and remote analysis of polycyclic aromatic hydrocarbons in clear and turbid acqueous environments,�?? Anal. Chim. Acta 522, 145-152 (2004).
    [CrossRef]
  8. N. Ertas, E. U. Akkaya, and O. Y. Ataman, �??Simultaneous determination of cadmium and zinc using a fiber optic device and fluorescence spectrometry,�?? Talanta 51, 639-699 (2000).
    [CrossRef]
  9. C. Zhu, Q. Liu, and N. Ramanujam, �??Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: A Monte Carlo simulation,�?? J. Bio. Opt. 8, 237-247 (2003).
    [CrossRef]
  10. M. Johns, C. A. Giller, D. C. German, and H. Liu, �??Determination of reduced scattering coefficient of biological tissue from a needle-like probe,�?? Opt. Express 13, 4828-4842 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-4828">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-4828</a>.
    [CrossRef] [PubMed]
  11. J. Ma and W. J. Bock, �??Modeling of photonic crystal fiber with air holes sealed at the fiber end and its application to fluorescent light collection efficiency enhancement,�?? Opt. Express 13, 2385-2393 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2385">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2385</a>.
    [CrossRef] [PubMed]
  12. W. Demtröder, Laser Spectroscopy: Basic concepts and instrumentation (Springer-Verlag, second edition, 1996), Ch. 4.
  13. The Newport Oriel Light Resource (Newport Corp., 2004), Ch. 1.
  14. S. M. MacKinnon and Z. Y. Wang, �??Synthesis and characterization of poly(aryl ether imide)s containing electroactive perylene diimide and naphthalene diimide units,�?? J. Polym. Sci. Part A: Polym. Chem. 38, 3467-3475 (2000).
    [CrossRef]
  15. N. Takai and T. Asakura, �??Statistical properties of laser speckles produced under illumination from a multimode optical fiber,�?? J. Opt. Soc. Am. A. 2, 1282-1290 (1985).
    [CrossRef]
  16. G. Cancellieri and U. Ravaioli, Measurements of Optical Fibers and Devices: Theory and Experiments (Artech House Inc., 1984), Ch. 1.
  17. D. Gloge, �??Optical power flow in multimode fibers,�?? Bell Syst. Tech. J. 51, 1767-1783 (1972).
  18. <a href="http://www.thorlabs.com">http://www.thorlabs.com</a>.
  19. M. A. Losada, I. Garcés, J. Mateo, I. Salinas, J. Lou, and J. Zubí, �??Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers,�?? IEEE J. Lightwave Technol. 20, 1160-1164 (2002).
    [CrossRef]
  20. G. Keiser, Optical fiber communications (McGraw-Hill Higher Education, third edition, 2000), Ch. 3.

Anal. Chem. (1)

R. L. McCreery, M. Fleischmann, and P. Hendra, �??Fiber Optic Probe for Remote Raman Spectrometry,�?? Anal. Chem. 55, 148-150 (1983).
[CrossRef]

Anal. Chim. Acta (1)

C. Sluszny, V. V. Gridin, V. Bulatov, and I. Schechter, �??Polymer film sensor for sampling and remote analysis of polycyclic aromatic hydrocarbons in clear and turbid acqueous environments,�?? Anal. Chim. Acta 522, 145-152 (2004).
[CrossRef]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

D. Gloge, �??Optical power flow in multimode fibers,�?? Bell Syst. Tech. J. 51, 1767-1783 (1972).

IEEE J. Lightwave Technol. (1)

M. A. Losada, I. Garcés, J. Mateo, I. Salinas, J. Lou, and J. Zubí, �??Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers,�?? IEEE J. Lightwave Technol. 20, 1160-1164 (2002).
[CrossRef]

J. Bio. Opt. (2)

C. Zhu, Q. Liu, and N. Ramanujam, �??Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: A Monte Carlo simulation,�?? J. Bio. Opt. 8, 237-247 (2003).
[CrossRef]

U. Utzinger and R. R. Richards-Kortum, �??Fiber optic probes for biomedical optical spectroscopy,�?? J. Bio. Opt. 8, 121-147 (2003).
[CrossRef]

J. Opt. Soc. Am. A. (1)

N. Takai and T. Asakura, �??Statistical properties of laser speckles produced under illumination from a multimode optical fiber,�?? J. Opt. Soc. Am. A. 2, 1282-1290 (1985).
[CrossRef]

J. Polym. Sci. Part A: Polym. Chem. (1)

S. M. MacKinnon and Z. Y. Wang, �??Synthesis and characterization of poly(aryl ether imide)s containing electroactive perylene diimide and naphthalene diimide units,�?? J. Polym. Sci. Part A: Polym. Chem. 38, 3467-3475 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Talanta (1)

N. Ertas, E. U. Akkaya, and O. Y. Ataman, �??Simultaneous determination of cadmium and zinc using a fiber optic device and fluorescence spectrometry,�?? Talanta 51, 639-699 (2000).
[CrossRef]

Other (7)

J. Dakin and B. Culshaw, eds., Optical Fiber Sensors (Artech House Inc., 1997), Vol. 4, Ch. 7.

<a href="http://www.oceanoptics.com/homepage.asp">http://www.oceanoptics.com/homepage.asp</a>.

W. Demtröder, Laser Spectroscopy: Basic concepts and instrumentation (Springer-Verlag, second edition, 1996), Ch. 4.

The Newport Oriel Light Resource (Newport Corp., 2004), Ch. 1.

G. Keiser, Optical fiber communications (McGraw-Hill Higher Education, third edition, 2000), Ch. 3.

G. Cancellieri and U. Ravaioli, Measurements of Optical Fibers and Devices: Theory and Experiments (Artech House Inc., 1984), Ch. 1.

<a href="http://www.thorlabs.com">http://www.thorlabs.com</a>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Configuration of a two-fiber probe. The maximum launch and reception angles of the illuminating and receiving fibers, determined by the NA of the fiber, are indicated by the dotted lines. The thicker red lines represent the emitted light rays from higher excitation / emission intensity areas. (a) The probe-membrane sample separation d0 is small (d0 →0), so a smaller overlap area is created. (b) The probe-membrane sample separation dn is wider (dn >d0 ), so a larger overlap area is formed.

Fig. 2.
Fig. 2.

Fluorescence intensity observed from the spectrometer vs. the fiber end face separation L of the receiving fiber at different membrane positions d. The dashed red line indicates the position where the acceptance angle of the spectrometer is fully used at L = 2 mm. The red arrow to the left marks the areas where the spectrometer will receive the light rays with angles exceeding the maximum acceptance angle of the entrance slit. The unit of intensity is based on the estimated sensitivity of the USB2000 Spectrometer at 86 photons / count.

Fig. 3.
Fig. 3.

The optimum separation of receiving fiber L opt for maximum relative collection efficiency dη max vs. separation of probe-membrane d. The pink arrow highlights the L and d for optimum system performance.

Fig. 4.
Fig. 4.

Value of dη max vs. position of membrane d. The pink arrow highlights the L and d for optimum system performance where the maximum absolute fluorescent intensity I F-max takes place. This position combination yields dη max =17%.

Fig. 5.
Fig. 5.

Experimental results showing that at L = 2 mm and d =2.75 mm, maximum fluorescence signal meeting the required resolution is achieved. (a) Fluorescence intensity distribution vs. L at d = 2.75 mm. The data point highlighted by the pink arrow indicates the optimized combination of L and d which assures the optimum performance of the spectrometer. A description of the dashed red line, and left and right red arrows is found in the caption to Fig. 2. (b) The maximum relative emission level dI F-max vs. d. The highlighted data point indicates the optimized L and d assuring the highest collectable fluorescence signal of this probe.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

G = A · Ω ,
ϕ = t · G · I ,
d η max ( % ) = d I F max ( L 0 ) d I F ( L = 0 ) d I F max ( L 0 ) ,
I ( r , z ) = [ 2 a 2 q ( z ) 2 ] · I 0 · exp ( 2 r 2 q ( z ) 2 )
q ( z ) = λz π ζ 0 ,

Metrics